Loading…
Effect of coir fiber and inorganic filler hybridization on Innegra fiber-reinforced epoxy polymer composites: physical and mechanical properties
The present investigation compares the results of different fillers in terms of the physical, mechanical, and thermal characteristics of epoxy polymers. These epoxy hybrid composites were produced using a mechanical stirring-assisted wet lay-up method with coir microparticles, fly ash, titanium carb...
Saved in:
Published in: | Cellulose (London) 2021-10, Vol.28 (15), p.9803-9820 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present investigation compares the results of different fillers in terms of the physical, mechanical, and thermal characteristics of epoxy polymers. These epoxy hybrid composites were produced using a mechanical stirring-assisted wet lay-up method with coir microparticles, fly ash, titanium carbide (TiC) nanoparticles, and Innegra fabrics by mechanical stirring with a stirring rod. The tensile, flexural, and interlaminar shear characteristics of the fabricated epoxy hybrid composites were determined using a universal testing machine. Reinforcement with fly ash and TiC nanoparticles offers the most remarkable improvement in tensile, flexural, and impact strength, at approximately 2.84, 1.65, and 9.19 times compared with pure epoxy polymer. Differential scanning calorimetry and thermogravimetric analysis showed that the epoxy hybrid composites had enhanced thermal stability. The homogeneity of filler dispersion in the epoxy polymer was observed by scanning electron microscopy. |
---|---|
ISSN: | 0969-0239 1572-882X |
DOI: | 10.1007/s10570-021-04140-x |