Loading…

A new adjusted Liu estimator for the Poisson regression model

Summary The Poisson regression model (PRM) is usually applied in the situations when the dependent variable is in the form of count data. For estimating the unknown parameters of the PRM, maximum likelihood estimator (MLE) is commonly used. However, its performance is suspected when the regressors a...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation 2021-10, Vol.33 (20), p.n/a
Main Authors: Amin, Muhammad, Akram, Muhammad Nauman, Kibria, B. M. Golam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2930-340e54544e7aeaceff3d85efac2258c06b434645d884b455a836a4b28cb6aa603
cites cdi_FETCH-LOGICAL-c2930-340e54544e7aeaceff3d85efac2258c06b434645d884b455a836a4b28cb6aa603
container_end_page n/a
container_issue 20
container_start_page
container_title Concurrency and computation
container_volume 33
creator Amin, Muhammad
Akram, Muhammad Nauman
Kibria, B. M. Golam
description Summary The Poisson regression model (PRM) is usually applied in the situations when the dependent variable is in the form of count data. For estimating the unknown parameters of the PRM, maximum likelihood estimator (MLE) is commonly used. However, its performance is suspected when the regressors are multicollinear. The performance of MLE is not satisfactory in the presence of multicollinearity. To mitigate this problem, different biased estimators are discussed in the literature, that is, ridge and Liu. However, the drawback of using the traditional Liu estimator is that in most of the times, the shrinkage parameter d, attains a negative value which is the major disadvantage of traditional Liu estimator. So, to overcome this problem, we propose a new adjusted Poisson Liu estimator (APLE) for the PRM which is the robust solution to the problem of multicollinear explanatory variables. For assessment purpose, we perform a theoretical comparison with other competitive estimators. In addition, a Monte Carlo simulation study is conducted to show the superiority of the new estimator. At the end, two real life applications are also considered. From the findings of simulation study and two empirical applications, it is observed that the APLE is the most robust and consistent estimation method as compared to the MLE and other competitive estimators.
doi_str_mv 10.1002/cpe.6340
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574928960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574928960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-340e54544e7aeaceff3d85efac2258c06b434645d884b455a836a4b28cb6aa603</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKvgTwh48bI1300PHkqpH7BgD3oO2exEt2w3Ndml9N-btuLNwzDvwMPMOy9Ct5RMKCHswW1horggZ2hEJWcFycP5n2bqEl2ltCaEUsLpCD3OcQc7bOv1kHqocdkMGFLfbGwfIva5-i_Aq9CkFDoc4TNCSk2Wm1BDe40uvG0T3Pz2Mfp4Wr4vXory7fl1MS8Lx2acFNkOSCGFgKkF68B7XmsJ3jrGpHZEVYILJWSttaiElFZzZUXFtKuUtYrwMbo77d3G8D1kf2Ydhtjlk4bJqZgxPTtS9yfKxZBSBG-2MT8S94YScwjH5HDMIZyMFid017Sw_5czi9XyyP8AKoxkJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574928960</pqid></control><display><type>article</type><title>A new adjusted Liu estimator for the Poisson regression model</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Amin, Muhammad ; Akram, Muhammad Nauman ; Kibria, B. M. Golam</creator><creatorcontrib>Amin, Muhammad ; Akram, Muhammad Nauman ; Kibria, B. M. Golam</creatorcontrib><description>Summary The Poisson regression model (PRM) is usually applied in the situations when the dependent variable is in the form of count data. For estimating the unknown parameters of the PRM, maximum likelihood estimator (MLE) is commonly used. However, its performance is suspected when the regressors are multicollinear. The performance of MLE is not satisfactory in the presence of multicollinearity. To mitigate this problem, different biased estimators are discussed in the literature, that is, ridge and Liu. However, the drawback of using the traditional Liu estimator is that in most of the times, the shrinkage parameter d, attains a negative value which is the major disadvantage of traditional Liu estimator. So, to overcome this problem, we propose a new adjusted Poisson Liu estimator (APLE) for the PRM which is the robust solution to the problem of multicollinear explanatory variables. For assessment purpose, we perform a theoretical comparison with other competitive estimators. In addition, a Monte Carlo simulation study is conducted to show the superiority of the new estimator. At the end, two real life applications are also considered. From the findings of simulation study and two empirical applications, it is observed that the APLE is the most robust and consistent estimation method as compared to the MLE and other competitive estimators.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6340</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>APLE ; Dependent variables ; Liu estimator ; Maximum likelihood estimators ; Monte Carlo simulation ; multicollinearity ; Parameters ; Poisson density functions ; PRM ; Regression models ; ridge estimator ; Robustness (mathematics)</subject><ispartof>Concurrency and computation, 2021-10, Vol.33 (20), p.n/a</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-340e54544e7aeaceff3d85efac2258c06b434645d884b455a836a4b28cb6aa603</citedby><cites>FETCH-LOGICAL-c2930-340e54544e7aeaceff3d85efac2258c06b434645d884b455a836a4b28cb6aa603</cites><orcidid>0000-0001-6688-808X ; 0000-0002-7431-5756 ; 0000-0002-6073-1978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Amin, Muhammad</creatorcontrib><creatorcontrib>Akram, Muhammad Nauman</creatorcontrib><creatorcontrib>Kibria, B. M. Golam</creatorcontrib><title>A new adjusted Liu estimator for the Poisson regression model</title><title>Concurrency and computation</title><description>Summary The Poisson regression model (PRM) is usually applied in the situations when the dependent variable is in the form of count data. For estimating the unknown parameters of the PRM, maximum likelihood estimator (MLE) is commonly used. However, its performance is suspected when the regressors are multicollinear. The performance of MLE is not satisfactory in the presence of multicollinearity. To mitigate this problem, different biased estimators are discussed in the literature, that is, ridge and Liu. However, the drawback of using the traditional Liu estimator is that in most of the times, the shrinkage parameter d, attains a negative value which is the major disadvantage of traditional Liu estimator. So, to overcome this problem, we propose a new adjusted Poisson Liu estimator (APLE) for the PRM which is the robust solution to the problem of multicollinear explanatory variables. For assessment purpose, we perform a theoretical comparison with other competitive estimators. In addition, a Monte Carlo simulation study is conducted to show the superiority of the new estimator. At the end, two real life applications are also considered. From the findings of simulation study and two empirical applications, it is observed that the APLE is the most robust and consistent estimation method as compared to the MLE and other competitive estimators.</description><subject>APLE</subject><subject>Dependent variables</subject><subject>Liu estimator</subject><subject>Maximum likelihood estimators</subject><subject>Monte Carlo simulation</subject><subject>multicollinearity</subject><subject>Parameters</subject><subject>Poisson density functions</subject><subject>PRM</subject><subject>Regression models</subject><subject>ridge estimator</subject><subject>Robustness (mathematics)</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKvgTwh48bI1300PHkqpH7BgD3oO2exEt2w3Ndml9N-btuLNwzDvwMPMOy9Ct5RMKCHswW1horggZ2hEJWcFycP5n2bqEl2ltCaEUsLpCD3OcQc7bOv1kHqocdkMGFLfbGwfIva5-i_Aq9CkFDoc4TNCSk2Wm1BDe40uvG0T3Pz2Mfp4Wr4vXory7fl1MS8Lx2acFNkOSCGFgKkF68B7XmsJ3jrGpHZEVYILJWSttaiElFZzZUXFtKuUtYrwMbo77d3G8D1kf2Ydhtjlk4bJqZgxPTtS9yfKxZBSBG-2MT8S94YScwjH5HDMIZyMFid017Sw_5czi9XyyP8AKoxkJA</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Amin, Muhammad</creator><creator>Akram, Muhammad Nauman</creator><creator>Kibria, B. M. Golam</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6688-808X</orcidid><orcidid>https://orcid.org/0000-0002-7431-5756</orcidid><orcidid>https://orcid.org/0000-0002-6073-1978</orcidid></search><sort><creationdate>20211025</creationdate><title>A new adjusted Liu estimator for the Poisson regression model</title><author>Amin, Muhammad ; Akram, Muhammad Nauman ; Kibria, B. M. Golam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-340e54544e7aeaceff3d85efac2258c06b434645d884b455a836a4b28cb6aa603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>APLE</topic><topic>Dependent variables</topic><topic>Liu estimator</topic><topic>Maximum likelihood estimators</topic><topic>Monte Carlo simulation</topic><topic>multicollinearity</topic><topic>Parameters</topic><topic>Poisson density functions</topic><topic>PRM</topic><topic>Regression models</topic><topic>ridge estimator</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin, Muhammad</creatorcontrib><creatorcontrib>Akram, Muhammad Nauman</creatorcontrib><creatorcontrib>Kibria, B. M. Golam</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amin, Muhammad</au><au>Akram, Muhammad Nauman</au><au>Kibria, B. M. Golam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new adjusted Liu estimator for the Poisson regression model</atitle><jtitle>Concurrency and computation</jtitle><date>2021-10-25</date><risdate>2021</risdate><volume>33</volume><issue>20</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary The Poisson regression model (PRM) is usually applied in the situations when the dependent variable is in the form of count data. For estimating the unknown parameters of the PRM, maximum likelihood estimator (MLE) is commonly used. However, its performance is suspected when the regressors are multicollinear. The performance of MLE is not satisfactory in the presence of multicollinearity. To mitigate this problem, different biased estimators are discussed in the literature, that is, ridge and Liu. However, the drawback of using the traditional Liu estimator is that in most of the times, the shrinkage parameter d, attains a negative value which is the major disadvantage of traditional Liu estimator. So, to overcome this problem, we propose a new adjusted Poisson Liu estimator (APLE) for the PRM which is the robust solution to the problem of multicollinear explanatory variables. For assessment purpose, we perform a theoretical comparison with other competitive estimators. In addition, a Monte Carlo simulation study is conducted to show the superiority of the new estimator. At the end, two real life applications are also considered. From the findings of simulation study and two empirical applications, it is observed that the APLE is the most robust and consistent estimation method as compared to the MLE and other competitive estimators.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cpe.6340</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6688-808X</orcidid><orcidid>https://orcid.org/0000-0002-7431-5756</orcidid><orcidid>https://orcid.org/0000-0002-6073-1978</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2021-10, Vol.33 (20), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2574928960
source Wiley-Blackwell Read & Publish Collection
subjects APLE
Dependent variables
Liu estimator
Maximum likelihood estimators
Monte Carlo simulation
multicollinearity
Parameters
Poisson density functions
PRM
Regression models
ridge estimator
Robustness (mathematics)
title A new adjusted Liu estimator for the Poisson regression model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20adjusted%20Liu%20estimator%20for%20the%20Poisson%20regression%20model&rft.jtitle=Concurrency%20and%20computation&rft.au=Amin,%20Muhammad&rft.date=2021-10-25&rft.volume=33&rft.issue=20&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6340&rft_dat=%3Cproquest_cross%3E2574928960%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2930-340e54544e7aeaceff3d85efac2258c06b434645d884b455a836a4b28cb6aa603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2574928960&rft_id=info:pmid/&rfr_iscdi=true