Loading…
A new adjusted Liu estimator for the Poisson regression model
Summary The Poisson regression model (PRM) is usually applied in the situations when the dependent variable is in the form of count data. For estimating the unknown parameters of the PRM, maximum likelihood estimator (MLE) is commonly used. However, its performance is suspected when the regressors a...
Saved in:
Published in: | Concurrency and computation 2021-10, Vol.33 (20), p.n/a |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2930-340e54544e7aeaceff3d85efac2258c06b434645d884b455a836a4b28cb6aa603 |
---|---|
cites | cdi_FETCH-LOGICAL-c2930-340e54544e7aeaceff3d85efac2258c06b434645d884b455a836a4b28cb6aa603 |
container_end_page | n/a |
container_issue | 20 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 33 |
creator | Amin, Muhammad Akram, Muhammad Nauman Kibria, B. M. Golam |
description | Summary
The Poisson regression model (PRM) is usually applied in the situations when the dependent variable is in the form of count data. For estimating the unknown parameters of the PRM, maximum likelihood estimator (MLE) is commonly used. However, its performance is suspected when the regressors are multicollinear. The performance of MLE is not satisfactory in the presence of multicollinearity. To mitigate this problem, different biased estimators are discussed in the literature, that is, ridge and Liu. However, the drawback of using the traditional Liu estimator is that in most of the times, the shrinkage parameter d, attains a negative value which is the major disadvantage of traditional Liu estimator. So, to overcome this problem, we propose a new adjusted Poisson Liu estimator (APLE) for the PRM which is the robust solution to the problem of multicollinear explanatory variables. For assessment purpose, we perform a theoretical comparison with other competitive estimators. In addition, a Monte Carlo simulation study is conducted to show the superiority of the new estimator. At the end, two real life applications are also considered. From the findings of simulation study and two empirical applications, it is observed that the APLE is the most robust and consistent estimation method as compared to the MLE and other competitive estimators. |
doi_str_mv | 10.1002/cpe.6340 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574928960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574928960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-340e54544e7aeaceff3d85efac2258c06b434645d884b455a836a4b28cb6aa603</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKvgTwh48bI1300PHkqpH7BgD3oO2exEt2w3Ndml9N-btuLNwzDvwMPMOy9Ct5RMKCHswW1horggZ2hEJWcFycP5n2bqEl2ltCaEUsLpCD3OcQc7bOv1kHqocdkMGFLfbGwfIva5-i_Aq9CkFDoc4TNCSk2Wm1BDe40uvG0T3Pz2Mfp4Wr4vXory7fl1MS8Lx2acFNkOSCGFgKkF68B7XmsJ3jrGpHZEVYILJWSttaiElFZzZUXFtKuUtYrwMbo77d3G8D1kf2Ydhtjlk4bJqZgxPTtS9yfKxZBSBG-2MT8S94YScwjH5HDMIZyMFid017Sw_5czi9XyyP8AKoxkJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574928960</pqid></control><display><type>article</type><title>A new adjusted Liu estimator for the Poisson regression model</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Amin, Muhammad ; Akram, Muhammad Nauman ; Kibria, B. M. Golam</creator><creatorcontrib>Amin, Muhammad ; Akram, Muhammad Nauman ; Kibria, B. M. Golam</creatorcontrib><description>Summary
The Poisson regression model (PRM) is usually applied in the situations when the dependent variable is in the form of count data. For estimating the unknown parameters of the PRM, maximum likelihood estimator (MLE) is commonly used. However, its performance is suspected when the regressors are multicollinear. The performance of MLE is not satisfactory in the presence of multicollinearity. To mitigate this problem, different biased estimators are discussed in the literature, that is, ridge and Liu. However, the drawback of using the traditional Liu estimator is that in most of the times, the shrinkage parameter d, attains a negative value which is the major disadvantage of traditional Liu estimator. So, to overcome this problem, we propose a new adjusted Poisson Liu estimator (APLE) for the PRM which is the robust solution to the problem of multicollinear explanatory variables. For assessment purpose, we perform a theoretical comparison with other competitive estimators. In addition, a Monte Carlo simulation study is conducted to show the superiority of the new estimator. At the end, two real life applications are also considered. From the findings of simulation study and two empirical applications, it is observed that the APLE is the most robust and consistent estimation method as compared to the MLE and other competitive estimators.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6340</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>APLE ; Dependent variables ; Liu estimator ; Maximum likelihood estimators ; Monte Carlo simulation ; multicollinearity ; Parameters ; Poisson density functions ; PRM ; Regression models ; ridge estimator ; Robustness (mathematics)</subject><ispartof>Concurrency and computation, 2021-10, Vol.33 (20), p.n/a</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-340e54544e7aeaceff3d85efac2258c06b434645d884b455a836a4b28cb6aa603</citedby><cites>FETCH-LOGICAL-c2930-340e54544e7aeaceff3d85efac2258c06b434645d884b455a836a4b28cb6aa603</cites><orcidid>0000-0001-6688-808X ; 0000-0002-7431-5756 ; 0000-0002-6073-1978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Amin, Muhammad</creatorcontrib><creatorcontrib>Akram, Muhammad Nauman</creatorcontrib><creatorcontrib>Kibria, B. M. Golam</creatorcontrib><title>A new adjusted Liu estimator for the Poisson regression model</title><title>Concurrency and computation</title><description>Summary
The Poisson regression model (PRM) is usually applied in the situations when the dependent variable is in the form of count data. For estimating the unknown parameters of the PRM, maximum likelihood estimator (MLE) is commonly used. However, its performance is suspected when the regressors are multicollinear. The performance of MLE is not satisfactory in the presence of multicollinearity. To mitigate this problem, different biased estimators are discussed in the literature, that is, ridge and Liu. However, the drawback of using the traditional Liu estimator is that in most of the times, the shrinkage parameter d, attains a negative value which is the major disadvantage of traditional Liu estimator. So, to overcome this problem, we propose a new adjusted Poisson Liu estimator (APLE) for the PRM which is the robust solution to the problem of multicollinear explanatory variables. For assessment purpose, we perform a theoretical comparison with other competitive estimators. In addition, a Monte Carlo simulation study is conducted to show the superiority of the new estimator. At the end, two real life applications are also considered. From the findings of simulation study and two empirical applications, it is observed that the APLE is the most robust and consistent estimation method as compared to the MLE and other competitive estimators.</description><subject>APLE</subject><subject>Dependent variables</subject><subject>Liu estimator</subject><subject>Maximum likelihood estimators</subject><subject>Monte Carlo simulation</subject><subject>multicollinearity</subject><subject>Parameters</subject><subject>Poisson density functions</subject><subject>PRM</subject><subject>Regression models</subject><subject>ridge estimator</subject><subject>Robustness (mathematics)</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKvgTwh48bI1300PHkqpH7BgD3oO2exEt2w3Ndml9N-btuLNwzDvwMPMOy9Ct5RMKCHswW1horggZ2hEJWcFycP5n2bqEl2ltCaEUsLpCD3OcQc7bOv1kHqocdkMGFLfbGwfIva5-i_Aq9CkFDoc4TNCSk2Wm1BDe40uvG0T3Pz2Mfp4Wr4vXory7fl1MS8Lx2acFNkOSCGFgKkF68B7XmsJ3jrGpHZEVYILJWSttaiElFZzZUXFtKuUtYrwMbo77d3G8D1kf2Ydhtjlk4bJqZgxPTtS9yfKxZBSBG-2MT8S94YScwjH5HDMIZyMFid017Sw_5czi9XyyP8AKoxkJA</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Amin, Muhammad</creator><creator>Akram, Muhammad Nauman</creator><creator>Kibria, B. M. Golam</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6688-808X</orcidid><orcidid>https://orcid.org/0000-0002-7431-5756</orcidid><orcidid>https://orcid.org/0000-0002-6073-1978</orcidid></search><sort><creationdate>20211025</creationdate><title>A new adjusted Liu estimator for the Poisson regression model</title><author>Amin, Muhammad ; Akram, Muhammad Nauman ; Kibria, B. M. Golam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-340e54544e7aeaceff3d85efac2258c06b434645d884b455a836a4b28cb6aa603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>APLE</topic><topic>Dependent variables</topic><topic>Liu estimator</topic><topic>Maximum likelihood estimators</topic><topic>Monte Carlo simulation</topic><topic>multicollinearity</topic><topic>Parameters</topic><topic>Poisson density functions</topic><topic>PRM</topic><topic>Regression models</topic><topic>ridge estimator</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin, Muhammad</creatorcontrib><creatorcontrib>Akram, Muhammad Nauman</creatorcontrib><creatorcontrib>Kibria, B. M. Golam</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amin, Muhammad</au><au>Akram, Muhammad Nauman</au><au>Kibria, B. M. Golam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new adjusted Liu estimator for the Poisson regression model</atitle><jtitle>Concurrency and computation</jtitle><date>2021-10-25</date><risdate>2021</risdate><volume>33</volume><issue>20</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary
The Poisson regression model (PRM) is usually applied in the situations when the dependent variable is in the form of count data. For estimating the unknown parameters of the PRM, maximum likelihood estimator (MLE) is commonly used. However, its performance is suspected when the regressors are multicollinear. The performance of MLE is not satisfactory in the presence of multicollinearity. To mitigate this problem, different biased estimators are discussed in the literature, that is, ridge and Liu. However, the drawback of using the traditional Liu estimator is that in most of the times, the shrinkage parameter d, attains a negative value which is the major disadvantage of traditional Liu estimator. So, to overcome this problem, we propose a new adjusted Poisson Liu estimator (APLE) for the PRM which is the robust solution to the problem of multicollinear explanatory variables. For assessment purpose, we perform a theoretical comparison with other competitive estimators. In addition, a Monte Carlo simulation study is conducted to show the superiority of the new estimator. At the end, two real life applications are also considered. From the findings of simulation study and two empirical applications, it is observed that the APLE is the most robust and consistent estimation method as compared to the MLE and other competitive estimators.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/cpe.6340</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6688-808X</orcidid><orcidid>https://orcid.org/0000-0002-7431-5756</orcidid><orcidid>https://orcid.org/0000-0002-6073-1978</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2021-10, Vol.33 (20), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2574928960 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | APLE Dependent variables Liu estimator Maximum likelihood estimators Monte Carlo simulation multicollinearity Parameters Poisson density functions PRM Regression models ridge estimator Robustness (mathematics) |
title | A new adjusted Liu estimator for the Poisson regression model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20adjusted%20Liu%20estimator%20for%20the%20Poisson%20regression%20model&rft.jtitle=Concurrency%20and%20computation&rft.au=Amin,%20Muhammad&rft.date=2021-10-25&rft.volume=33&rft.issue=20&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6340&rft_dat=%3Cproquest_cross%3E2574928960%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2930-340e54544e7aeaceff3d85efac2258c06b434645d884b455a836a4b28cb6aa603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2574928960&rft_id=info:pmid/&rfr_iscdi=true |