Loading…
Statistical thermal model analysis of particle production at LHC
A successful description of the particle ratios measured in heavy-ion collisions has been achieved in the framework of thermal models. In such a way, a large number of observables can be reproduced with a small number of parameters, namely the temperature, baryo-chemical potential and a factor measu...
Saved in:
Published in: | Journal of physics. Conference series 2016-04, Vol.707 (1), p.12031 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A successful description of the particle ratios measured in heavy-ion collisions has been achieved in the framework of thermal models. In such a way, a large number of observables can be reproduced with a small number of parameters, namely the temperature, baryo-chemical potential and a factor measuring the degree of strangeness saturation. The comparison of experimental data at and the model estimations has made possible to define the thermodynamic parameters of strongly interacting matter at chemical freeze-out temperature. The detailed study of hadron and meson production including resonances using the statistical-thermal model is discussed. Their ratios are compared with the existing experimental data and predictions are made for pp and heavy-ion collisions at RHIC and LHC energies. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/707/1/012031 |