Loading…

Fast response electromagnetic follow-ups from low latency GW triggers

We investigate joint low-latency gravitational wave (GW) detection and prompt electromagnetic (EM) follow-up observations of coalescing binary neutron stars (BNSs). Assuming that BNS mergers are associated with short duration gamma ray bursts (SGRBs), we evaluate if rapid EM follow-ups can capture t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2016-05, Vol.716 (1), p.12009
Main Authors: Howell, E J, Chu, Q, Rowlinson, A, Gao, H, Zhang, B, Tingay, S J, Boër, M, Wen, L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate joint low-latency gravitational wave (GW) detection and prompt electromagnetic (EM) follow-up observations of coalescing binary neutron stars (BNSs). Assuming that BNS mergers are associated with short duration gamma ray bursts (SGRBs), we evaluate if rapid EM follow-ups can capture the prompt emission, early engine activity or reveal any potential by-products such as magnetars or fast radio bursts. To examine the expected performance of extreme low-latency search pipelines, we simulate a population of coalescing BNSs and use these to estimate the detectability and localisation efficiency at different times before merger. Using observational SGRB flux data corrected to the range of the advanced GW interferometric detectors, we determine what EM observations could be achieved from low-frequency radio up to high energy γ-ray. We show that while challenging, breakthrough multi-messenger science is possible through low latency pipelines.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/716/1/012009