Loading…
Learning-Based Satisfied User Ratio Prediction for Symmetrically and Asymmetrically Compressed Stereoscopic Images
The satisfied user ratio (SUR) for a given distortion level is the fraction of subjects that cannot perceive a quality difference between the original image and its compressed version. By predicting the SUR, one can determine the highest distortion level which allows to save bit rate while guarantee...
Saved in:
Published in: | IEEE multimedia 2021-07, Vol.28 (3), p.8-20 |
---|---|
Main Authors: | , , , , |
Format: | Magazinearticle |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The satisfied user ratio (SUR) for a given distortion level is the fraction of subjects that cannot perceive a quality difference between the original image and its compressed version. By predicting the SUR, one can determine the highest distortion level which allows to save bit rate while guaranteeing a good visual quality. We propose the first method to predict the SUR for symmetrically and asymmetrically compressed stereoscopic images. Unlike SUR prediction techniques for two-dimensional images and videos, our method exploits the properties of binocular vision. We first extract features that characterize image quality and image content. Then, we use gradient boosting decision trees to reduce the number of features and train a regression model that learns a mapping function from the features to the SUR values. Experimental results on the SIAT-JSSI and SIAT-JASI datasets show high SUR prediction accuracy for H.265 All-Intra and JPEG2000 symmetrically and asymmetrically compressed stereoscopic images. |
---|---|
ISSN: | 1070-986X 1941-0166 |
DOI: | 10.1109/MMUL.2021.3060831 |