Loading…
A Closed-Loop Framework for Inference, Prediction, and Control of SIR Epidemics on Networks
Motivated by the ongoing pandemic COVID-19, we propose a closed-loop framework that combines inference from testing data, learning the parameters of the dynamics and optimal resource allocation for controlling the spread of the susceptible-infected-recovered (SIR) epidemic on networks. Our framework...
Saved in:
Published in: | IEEE transactions on network science and engineering 2021-07, Vol.8 (3), p.2262-2278 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-f23c405f61039ad82b3dead2e810efad75511f132873775d2e3432d3331618273 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-f23c405f61039ad82b3dead2e810efad75511f132873775d2e3432d3331618273 |
container_end_page | 2278 |
container_issue | 3 |
container_start_page | 2262 |
container_title | IEEE transactions on network science and engineering |
container_volume | 8 |
creator | Hota, Ashish R. Godbole, Jaydeep Pare, Philip E. |
description | Motivated by the ongoing pandemic COVID-19, we propose a closed-loop framework that combines inference from testing data, learning the parameters of the dynamics and optimal resource allocation for controlling the spread of the susceptible-infected-recovered (SIR) epidemic on networks. Our framework incorporates several key factors present in testing data, such as the fact that high risk individuals are more likely to undergo testing. We then present two tractable optimization problems to evaluate the trade-off between controlling the growth-rate of the epidemic and the cost of non-pharmaceutical interventions (NPIs). We illustrate the significance of the proposed closed-loop framework via extensive simulations and analysis of real, publicly-available testing data for COVID-19. Our results illustrate the significance of early testing and the emergence of a second wave of infections if NPIs are prematurely withdrawn. |
doi_str_mv | 10.1109/TNSE.2021.3085866 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2575129532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9444780</ieee_id><sourcerecordid>2575129532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f23c405f61039ad82b3dead2e810efad75511f132873775d2e3432d3331618273</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOOZ-gPgS8HWdSW7TpI9jbDoYU9wEwYdQmxvo3JqadIj_3pYNn-6Fe865h4-QW84mnLP8YbvezCeCCT4BpqXOsgsyEABpAiJ_v-x3oZI0y9U1GcW4Y4xxoTMAGJCPKZ3tfUSbrLxv6CIUB_zx4Ys6H-iydhiwLnFMXwLaqmwrX49pUVs683Ub_J56RzfLVzpvKouHqozU13SNbR8Rb8iVK_YRR-c5JG-L-Xb2lKyeH5ez6SopRQ5t4gSUKZMu4wzywmrxCRYLK1Bzhq6wSkrOHQehFSgluwOkIGxXn2dcCwVDcn_KbYL_PmJszc4fQ929NEIqyUUuQXQqflKVwccY0JkmVIci_BrOTI_R9BhNj9GcMXaeu5OnQsR_fZ6mqdIM_gC2O2vs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575129532</pqid></control><display><type>article</type><title>A Closed-Loop Framework for Inference, Prediction, and Control of SIR Epidemics on Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hota, Ashish R. ; Godbole, Jaydeep ; Pare, Philip E.</creator><creatorcontrib>Hota, Ashish R. ; Godbole, Jaydeep ; Pare, Philip E.</creatorcontrib><description>Motivated by the ongoing pandemic COVID-19, we propose a closed-loop framework that combines inference from testing data, learning the parameters of the dynamics and optimal resource allocation for controlling the spread of the susceptible-infected-recovered (SIR) epidemic on networks. Our framework incorporates several key factors present in testing data, such as the fact that high risk individuals are more likely to undergo testing. We then present two tractable optimization problems to evaluate the trade-off between controlling the growth-rate of the epidemic and the cost of non-pharmaceutical interventions (NPIs). We illustrate the significance of the proposed closed-loop framework via extensive simulations and analysis of real, publicly-available testing data for COVID-19. Our results illustrate the significance of early testing and the emergence of a second wave of infections if NPIs are prematurely withdrawn.</description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2021.3085866</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bayesian Inference ; Coronaviruses ; COVID-19 ; Disease control ; Epidemic Processes on Networks ; Epidemics ; Geometric Programming ; Inference ; Non-Pharmaceutical Interventions ; Nonlinear Observer ; Optimization ; Parameter Estimation ; Resource allocation ; Resource management ; SIR Epidemic Model ; Sociology ; Statistics ; Testing</subject><ispartof>IEEE transactions on network science and engineering, 2021-07, Vol.8 (3), p.2262-2278</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f23c405f61039ad82b3dead2e810efad75511f132873775d2e3432d3331618273</citedby><cites>FETCH-LOGICAL-c293t-f23c405f61039ad82b3dead2e810efad75511f132873775d2e3432d3331618273</cites><orcidid>0000-0003-0562-0594 ; 0000-0002-4095-7320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9444780$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hota, Ashish R.</creatorcontrib><creatorcontrib>Godbole, Jaydeep</creatorcontrib><creatorcontrib>Pare, Philip E.</creatorcontrib><title>A Closed-Loop Framework for Inference, Prediction, and Control of SIR Epidemics on Networks</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description>Motivated by the ongoing pandemic COVID-19, we propose a closed-loop framework that combines inference from testing data, learning the parameters of the dynamics and optimal resource allocation for controlling the spread of the susceptible-infected-recovered (SIR) epidemic on networks. Our framework incorporates several key factors present in testing data, such as the fact that high risk individuals are more likely to undergo testing. We then present two tractable optimization problems to evaluate the trade-off between controlling the growth-rate of the epidemic and the cost of non-pharmaceutical interventions (NPIs). We illustrate the significance of the proposed closed-loop framework via extensive simulations and analysis of real, publicly-available testing data for COVID-19. Our results illustrate the significance of early testing and the emergence of a second wave of infections if NPIs are prematurely withdrawn.</description><subject>Bayesian Inference</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease control</subject><subject>Epidemic Processes on Networks</subject><subject>Epidemics</subject><subject>Geometric Programming</subject><subject>Inference</subject><subject>Non-Pharmaceutical Interventions</subject><subject>Nonlinear Observer</subject><subject>Optimization</subject><subject>Parameter Estimation</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>SIR Epidemic Model</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Testing</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOOZ-gPgS8HWdSW7TpI9jbDoYU9wEwYdQmxvo3JqadIj_3pYNn-6Fe865h4-QW84mnLP8YbvezCeCCT4BpqXOsgsyEABpAiJ_v-x3oZI0y9U1GcW4Y4xxoTMAGJCPKZ3tfUSbrLxv6CIUB_zx4Ys6H-iydhiwLnFMXwLaqmwrX49pUVs683Ub_J56RzfLVzpvKouHqozU13SNbR8Rb8iVK_YRR-c5JG-L-Xb2lKyeH5ez6SopRQ5t4gSUKZMu4wzywmrxCRYLK1Bzhq6wSkrOHQehFSgluwOkIGxXn2dcCwVDcn_KbYL_PmJszc4fQ929NEIqyUUuQXQqflKVwccY0JkmVIci_BrOTI_R9BhNj9GcMXaeu5OnQsR_fZ6mqdIM_gC2O2vs</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Hota, Ashish R.</creator><creator>Godbole, Jaydeep</creator><creator>Pare, Philip E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0562-0594</orcidid><orcidid>https://orcid.org/0000-0002-4095-7320</orcidid></search><sort><creationdate>20210701</creationdate><title>A Closed-Loop Framework for Inference, Prediction, and Control of SIR Epidemics on Networks</title><author>Hota, Ashish R. ; Godbole, Jaydeep ; Pare, Philip E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f23c405f61039ad82b3dead2e810efad75511f132873775d2e3432d3331618273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian Inference</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease control</topic><topic>Epidemic Processes on Networks</topic><topic>Epidemics</topic><topic>Geometric Programming</topic><topic>Inference</topic><topic>Non-Pharmaceutical Interventions</topic><topic>Nonlinear Observer</topic><topic>Optimization</topic><topic>Parameter Estimation</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>SIR Epidemic Model</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hota, Ashish R.</creatorcontrib><creatorcontrib>Godbole, Jaydeep</creatorcontrib><creatorcontrib>Pare, Philip E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hota, Ashish R.</au><au>Godbole, Jaydeep</au><au>Pare, Philip E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Closed-Loop Framework for Inference, Prediction, and Control of SIR Epidemics on Networks</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>8</volume><issue>3</issue><spage>2262</spage><epage>2278</epage><pages>2262-2278</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract>Motivated by the ongoing pandemic COVID-19, we propose a closed-loop framework that combines inference from testing data, learning the parameters of the dynamics and optimal resource allocation for controlling the spread of the susceptible-infected-recovered (SIR) epidemic on networks. Our framework incorporates several key factors present in testing data, such as the fact that high risk individuals are more likely to undergo testing. We then present two tractable optimization problems to evaluate the trade-off between controlling the growth-rate of the epidemic and the cost of non-pharmaceutical interventions (NPIs). We illustrate the significance of the proposed closed-loop framework via extensive simulations and analysis of real, publicly-available testing data for COVID-19. Our results illustrate the significance of early testing and the emergence of a second wave of infections if NPIs are prematurely withdrawn.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TNSE.2021.3085866</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0562-0594</orcidid><orcidid>https://orcid.org/0000-0002-4095-7320</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2327-4697 |
ispartof | IEEE transactions on network science and engineering, 2021-07, Vol.8 (3), p.2262-2278 |
issn | 2327-4697 2334-329X |
language | eng |
recordid | cdi_proquest_journals_2575129532 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Bayesian Inference Coronaviruses COVID-19 Disease control Epidemic Processes on Networks Epidemics Geometric Programming Inference Non-Pharmaceutical Interventions Nonlinear Observer Optimization Parameter Estimation Resource allocation Resource management SIR Epidemic Model Sociology Statistics Testing |
title | A Closed-Loop Framework for Inference, Prediction, and Control of SIR Epidemics on Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Closed-Loop%20Framework%20for%20Inference,%20Prediction,%20and%20Control%20of%20SIR%20Epidemics%20on%20Networks&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Hota,%20Ashish%20R.&rft.date=2021-07-01&rft.volume=8&rft.issue=3&rft.spage=2262&rft.epage=2278&rft.pages=2262-2278&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2021.3085866&rft_dat=%3Cproquest_ieee_%3E2575129532%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-f23c405f61039ad82b3dead2e810efad75511f132873775d2e3432d3331618273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2575129532&rft_id=info:pmid/&rft_ieee_id=9444780&rfr_iscdi=true |