Loading…

A Closed-Loop Framework for Inference, Prediction, and Control of SIR Epidemics on Networks

Motivated by the ongoing pandemic COVID-19, we propose a closed-loop framework that combines inference from testing data, learning the parameters of the dynamics and optimal resource allocation for controlling the spread of the susceptible-infected-recovered (SIR) epidemic on networks. Our framework...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on network science and engineering 2021-07, Vol.8 (3), p.2262-2278
Main Authors: Hota, Ashish R., Godbole, Jaydeep, Pare, Philip E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-f23c405f61039ad82b3dead2e810efad75511f132873775d2e3432d3331618273
cites cdi_FETCH-LOGICAL-c293t-f23c405f61039ad82b3dead2e810efad75511f132873775d2e3432d3331618273
container_end_page 2278
container_issue 3
container_start_page 2262
container_title IEEE transactions on network science and engineering
container_volume 8
creator Hota, Ashish R.
Godbole, Jaydeep
Pare, Philip E.
description Motivated by the ongoing pandemic COVID-19, we propose a closed-loop framework that combines inference from testing data, learning the parameters of the dynamics and optimal resource allocation for controlling the spread of the susceptible-infected-recovered (SIR) epidemic on networks. Our framework incorporates several key factors present in testing data, such as the fact that high risk individuals are more likely to undergo testing. We then present two tractable optimization problems to evaluate the trade-off between controlling the growth-rate of the epidemic and the cost of non-pharmaceutical interventions (NPIs). We illustrate the significance of the proposed closed-loop framework via extensive simulations and analysis of real, publicly-available testing data for COVID-19. Our results illustrate the significance of early testing and the emergence of a second wave of infections if NPIs are prematurely withdrawn.
doi_str_mv 10.1109/TNSE.2021.3085866
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2575129532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9444780</ieee_id><sourcerecordid>2575129532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f23c405f61039ad82b3dead2e810efad75511f132873775d2e3432d3331618273</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOOZ-gPgS8HWdSW7TpI9jbDoYU9wEwYdQmxvo3JqadIj_3pYNn-6Fe865h4-QW84mnLP8YbvezCeCCT4BpqXOsgsyEABpAiJ_v-x3oZI0y9U1GcW4Y4xxoTMAGJCPKZ3tfUSbrLxv6CIUB_zx4Ys6H-iydhiwLnFMXwLaqmwrX49pUVs683Ub_J56RzfLVzpvKouHqozU13SNbR8Rb8iVK_YRR-c5JG-L-Xb2lKyeH5ez6SopRQ5t4gSUKZMu4wzywmrxCRYLK1Bzhq6wSkrOHQehFSgluwOkIGxXn2dcCwVDcn_KbYL_PmJszc4fQ929NEIqyUUuQXQqflKVwccY0JkmVIci_BrOTI_R9BhNj9GcMXaeu5OnQsR_fZ6mqdIM_gC2O2vs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575129532</pqid></control><display><type>article</type><title>A Closed-Loop Framework for Inference, Prediction, and Control of SIR Epidemics on Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hota, Ashish R. ; Godbole, Jaydeep ; Pare, Philip E.</creator><creatorcontrib>Hota, Ashish R. ; Godbole, Jaydeep ; Pare, Philip E.</creatorcontrib><description>Motivated by the ongoing pandemic COVID-19, we propose a closed-loop framework that combines inference from testing data, learning the parameters of the dynamics and optimal resource allocation for controlling the spread of the susceptible-infected-recovered (SIR) epidemic on networks. Our framework incorporates several key factors present in testing data, such as the fact that high risk individuals are more likely to undergo testing. We then present two tractable optimization problems to evaluate the trade-off between controlling the growth-rate of the epidemic and the cost of non-pharmaceutical interventions (NPIs). We illustrate the significance of the proposed closed-loop framework via extensive simulations and analysis of real, publicly-available testing data for COVID-19. Our results illustrate the significance of early testing and the emergence of a second wave of infections if NPIs are prematurely withdrawn.</description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2021.3085866</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bayesian Inference ; Coronaviruses ; COVID-19 ; Disease control ; Epidemic Processes on Networks ; Epidemics ; Geometric Programming ; Inference ; Non-Pharmaceutical Interventions ; Nonlinear Observer ; Optimization ; Parameter Estimation ; Resource allocation ; Resource management ; SIR Epidemic Model ; Sociology ; Statistics ; Testing</subject><ispartof>IEEE transactions on network science and engineering, 2021-07, Vol.8 (3), p.2262-2278</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f23c405f61039ad82b3dead2e810efad75511f132873775d2e3432d3331618273</citedby><cites>FETCH-LOGICAL-c293t-f23c405f61039ad82b3dead2e810efad75511f132873775d2e3432d3331618273</cites><orcidid>0000-0003-0562-0594 ; 0000-0002-4095-7320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9444780$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hota, Ashish R.</creatorcontrib><creatorcontrib>Godbole, Jaydeep</creatorcontrib><creatorcontrib>Pare, Philip E.</creatorcontrib><title>A Closed-Loop Framework for Inference, Prediction, and Control of SIR Epidemics on Networks</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description>Motivated by the ongoing pandemic COVID-19, we propose a closed-loop framework that combines inference from testing data, learning the parameters of the dynamics and optimal resource allocation for controlling the spread of the susceptible-infected-recovered (SIR) epidemic on networks. Our framework incorporates several key factors present in testing data, such as the fact that high risk individuals are more likely to undergo testing. We then present two tractable optimization problems to evaluate the trade-off between controlling the growth-rate of the epidemic and the cost of non-pharmaceutical interventions (NPIs). We illustrate the significance of the proposed closed-loop framework via extensive simulations and analysis of real, publicly-available testing data for COVID-19. Our results illustrate the significance of early testing and the emergence of a second wave of infections if NPIs are prematurely withdrawn.</description><subject>Bayesian Inference</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease control</subject><subject>Epidemic Processes on Networks</subject><subject>Epidemics</subject><subject>Geometric Programming</subject><subject>Inference</subject><subject>Non-Pharmaceutical Interventions</subject><subject>Nonlinear Observer</subject><subject>Optimization</subject><subject>Parameter Estimation</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>SIR Epidemic Model</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Testing</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOOZ-gPgS8HWdSW7TpI9jbDoYU9wEwYdQmxvo3JqadIj_3pYNn-6Fe865h4-QW84mnLP8YbvezCeCCT4BpqXOsgsyEABpAiJ_v-x3oZI0y9U1GcW4Y4xxoTMAGJCPKZ3tfUSbrLxv6CIUB_zx4Ys6H-iydhiwLnFMXwLaqmwrX49pUVs683Ub_J56RzfLVzpvKouHqozU13SNbR8Rb8iVK_YRR-c5JG-L-Xb2lKyeH5ez6SopRQ5t4gSUKZMu4wzywmrxCRYLK1Bzhq6wSkrOHQehFSgluwOkIGxXn2dcCwVDcn_KbYL_PmJszc4fQ929NEIqyUUuQXQqflKVwccY0JkmVIci_BrOTI_R9BhNj9GcMXaeu5OnQsR_fZ6mqdIM_gC2O2vs</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Hota, Ashish R.</creator><creator>Godbole, Jaydeep</creator><creator>Pare, Philip E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0562-0594</orcidid><orcidid>https://orcid.org/0000-0002-4095-7320</orcidid></search><sort><creationdate>20210701</creationdate><title>A Closed-Loop Framework for Inference, Prediction, and Control of SIR Epidemics on Networks</title><author>Hota, Ashish R. ; Godbole, Jaydeep ; Pare, Philip E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f23c405f61039ad82b3dead2e810efad75511f132873775d2e3432d3331618273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian Inference</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease control</topic><topic>Epidemic Processes on Networks</topic><topic>Epidemics</topic><topic>Geometric Programming</topic><topic>Inference</topic><topic>Non-Pharmaceutical Interventions</topic><topic>Nonlinear Observer</topic><topic>Optimization</topic><topic>Parameter Estimation</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>SIR Epidemic Model</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hota, Ashish R.</creatorcontrib><creatorcontrib>Godbole, Jaydeep</creatorcontrib><creatorcontrib>Pare, Philip E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hota, Ashish R.</au><au>Godbole, Jaydeep</au><au>Pare, Philip E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Closed-Loop Framework for Inference, Prediction, and Control of SIR Epidemics on Networks</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>8</volume><issue>3</issue><spage>2262</spage><epage>2278</epage><pages>2262-2278</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract>Motivated by the ongoing pandemic COVID-19, we propose a closed-loop framework that combines inference from testing data, learning the parameters of the dynamics and optimal resource allocation for controlling the spread of the susceptible-infected-recovered (SIR) epidemic on networks. Our framework incorporates several key factors present in testing data, such as the fact that high risk individuals are more likely to undergo testing. We then present two tractable optimization problems to evaluate the trade-off between controlling the growth-rate of the epidemic and the cost of non-pharmaceutical interventions (NPIs). We illustrate the significance of the proposed closed-loop framework via extensive simulations and analysis of real, publicly-available testing data for COVID-19. Our results illustrate the significance of early testing and the emergence of a second wave of infections if NPIs are prematurely withdrawn.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TNSE.2021.3085866</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0562-0594</orcidid><orcidid>https://orcid.org/0000-0002-4095-7320</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-4697
ispartof IEEE transactions on network science and engineering, 2021-07, Vol.8 (3), p.2262-2278
issn 2327-4697
2334-329X
language eng
recordid cdi_proquest_journals_2575129532
source IEEE Electronic Library (IEL) Journals
subjects Bayesian Inference
Coronaviruses
COVID-19
Disease control
Epidemic Processes on Networks
Epidemics
Geometric Programming
Inference
Non-Pharmaceutical Interventions
Nonlinear Observer
Optimization
Parameter Estimation
Resource allocation
Resource management
SIR Epidemic Model
Sociology
Statistics
Testing
title A Closed-Loop Framework for Inference, Prediction, and Control of SIR Epidemics on Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Closed-Loop%20Framework%20for%20Inference,%20Prediction,%20and%20Control%20of%20SIR%20Epidemics%20on%20Networks&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Hota,%20Ashish%20R.&rft.date=2021-07-01&rft.volume=8&rft.issue=3&rft.spage=2262&rft.epage=2278&rft.pages=2262-2278&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2021.3085866&rft_dat=%3Cproquest_ieee_%3E2575129532%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-f23c405f61039ad82b3dead2e810efad75511f132873775d2e3432d3331618273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2575129532&rft_id=info:pmid/&rft_ieee_id=9444780&rfr_iscdi=true