Loading…

Determination of temperature-dependent Fermi resonance in acetonitrile–water binary solution by two-dimensional correlation Raman spectroscopy

Acetonitrile (AN), as an organic solvent, has a wide range of applications. The C≡N stretching vibration mode (ν2) and the combination mode (ν3 + ν4) are coupled by Fermi resonance (FR). In this work, the phase transition and the interaction mechanism of the 60% AN–water binary solution (AN–Water) w...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2021-09, Vol.155 (12), p.124302-124302
Main Authors: Cao, Xianwen, Xing, Lu, Wang, Ying, Wang, Shenghan, Sun, Chenglin, Men, Zhiwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Acetonitrile (AN), as an organic solvent, has a wide range of applications. The C≡N stretching vibration mode (ν2) and the combination mode (ν3 + ν4) are coupled by Fermi resonance (FR). In this work, the phase transition and the interaction mechanism of the 60% AN–water binary solution (AN–Water) were analyzed by calculating FR parameters and two-dimensional correlation Raman spectroscopy (2DCRS). The change in the ν2 band and the base bands ν3 and ν4 caused energy transfer by anharmonic interaction, which led to a change in FR parameters. With a reduced temperature, the energy transfer was caused by microheterogeneity and the energy transfer effect (293–273 K), the phase separation (263–233 K), and the phase transition of AN (223–173 K). The 2DCRS and Gaussian deconvolution provided more information on FR, which revealed the interaction mechanism of the Fermi doublet. The polarity and binding modes of molecules provided a new perspective for analyzing the transmission of electrons and ions in the electrolyte at different temperatures.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0060969