Loading…

Model Predictive Wind Turbine Control with Move-Blocking Strategy for Load Alleviation and Power Leveling

This contribution presents a Model Predictive Controller (MPC) with moveblocking strategy for combined power leveling and load alleviation in wind turbine operation with a focus on extreme loads. The controller is designed for a 3 MW wind turbine developed by W2E Wind to Energy GmbH and compared to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2016-09, Vol.753 (5), p.52021
Main Authors: Jassmann, U, Dickler, S, Zierath, J, Hakenberg, M, Abel, D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-23e4a7ff351d15187abeb1d99b630ed2cc303f4bc2ac08f91c0c810d3da06c353
cites cdi_FETCH-LOGICAL-c408t-23e4a7ff351d15187abeb1d99b630ed2cc303f4bc2ac08f91c0c810d3da06c353
container_end_page
container_issue 5
container_start_page 52021
container_title Journal of physics. Conference series
container_volume 753
creator Jassmann, U
Dickler, S
Zierath, J
Hakenberg, M
Abel, D
description This contribution presents a Model Predictive Controller (MPC) with moveblocking strategy for combined power leveling and load alleviation in wind turbine operation with a focus on extreme loads. The controller is designed for a 3 MW wind turbine developed by W2E Wind to Energy GmbH and compared to a baseline controller, using a classic control scheme, which currently operates the wind turbine. All simulations are carried out with a detailed multibody simulation turbine model implemented in alaska Wind. The performance of the two different controllers is compared using a 50-year Extreme Operation Gust event, since it is one of the main design drivers for the wind turbine considered in this work. The implemented MPC is able to level electrical output power and reduce mechanical loads at the same time. Without de-rating the achieved control results, a move-blocking strategy is utilized and allowed to reduce the computational burden of the MPC by more than 50% compared to a baseline MPC implementation. This even allows to run the MPC on a state of the art Programmable Logic Controller.
doi_str_mv 10.1088/1742-6596/753/5/052021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575229167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575229167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-23e4a7ff351d15187abeb1d99b630ed2cc303f4bc2ac08f91c0c810d3da06c353</originalsourceid><addsrcrecordid>eNqFkFtLwzAYhoMoOKd_QQJeeVGbQ9PD5SwemTjYxMuQJunMrE1Nu479ezMqE0Hwu8kH3_u8gQeAc4yuMErTECcRCWKWxWHCaMhCxAgi-ACM9ofD_Z6mx-CkbVcIUT_JCJgnq3QFZ04rIzvTa_hqagUXa1eYWsPc1p2zFdyY7g0-2V4H15WV76ZewnnnRKeXW1haB6dWKDipKt0b0RlbQ-FLZnaj_Un3uvLAKTgqRdXqs-93DF5ubxb5fTB9vnvIJ9NARijtAkJ1JJKypAwrzHCaiEIXWGVZEVOkFZGSIlpGhSRCorTMsEQyxUhRJVAsKaNjcDH0Ns5-rnXb8ZVdu9p_yQlLGCEZjhOfioeUdLZtnS5548yHcFuOEd9p5TtjfGePe62c8UGrB8kAGtv8NP8LXf4BPc7y-a8cb1RJvwDxfoef</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575229167</pqid></control><display><type>article</type><title>Model Predictive Wind Turbine Control with Move-Blocking Strategy for Load Alleviation and Power Leveling</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Jassmann, U ; Dickler, S ; Zierath, J ; Hakenberg, M ; Abel, D</creator><creatorcontrib>Jassmann, U ; Dickler, S ; Zierath, J ; Hakenberg, M ; Abel, D</creatorcontrib><description>This contribution presents a Model Predictive Controller (MPC) with moveblocking strategy for combined power leveling and load alleviation in wind turbine operation with a focus on extreme loads. The controller is designed for a 3 MW wind turbine developed by W2E Wind to Energy GmbH and compared to a baseline controller, using a classic control scheme, which currently operates the wind turbine. All simulations are carried out with a detailed multibody simulation turbine model implemented in alaska Wind. The performance of the two different controllers is compared using a 50-year Extreme Operation Gust event, since it is one of the main design drivers for the wind turbine considered in this work. The implemented MPC is able to level electrical output power and reduce mechanical loads at the same time. Without de-rating the achieved control results, a move-blocking strategy is utilized and allowed to reduce the computational burden of the MPC by more than 50% compared to a baseline MPC implementation. This even allows to run the MPC on a state of the art Programmable Logic Controller.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/753/5/052021</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Control systems design ; Leveling ; Load alleviation ; Multibody systems ; Physics ; Predictive control ; Programmable logic controllers ; Turbines ; Wind turbines</subject><ispartof>Journal of physics. Conference series, 2016-09, Vol.753 (5), p.52021</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-23e4a7ff351d15187abeb1d99b630ed2cc303f4bc2ac08f91c0c810d3da06c353</citedby><cites>FETCH-LOGICAL-c408t-23e4a7ff351d15187abeb1d99b630ed2cc303f4bc2ac08f91c0c810d3da06c353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2575229167?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Jassmann, U</creatorcontrib><creatorcontrib>Dickler, S</creatorcontrib><creatorcontrib>Zierath, J</creatorcontrib><creatorcontrib>Hakenberg, M</creatorcontrib><creatorcontrib>Abel, D</creatorcontrib><title>Model Predictive Wind Turbine Control with Move-Blocking Strategy for Load Alleviation and Power Leveling</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>This contribution presents a Model Predictive Controller (MPC) with moveblocking strategy for combined power leveling and load alleviation in wind turbine operation with a focus on extreme loads. The controller is designed for a 3 MW wind turbine developed by W2E Wind to Energy GmbH and compared to a baseline controller, using a classic control scheme, which currently operates the wind turbine. All simulations are carried out with a detailed multibody simulation turbine model implemented in alaska Wind. The performance of the two different controllers is compared using a 50-year Extreme Operation Gust event, since it is one of the main design drivers for the wind turbine considered in this work. The implemented MPC is able to level electrical output power and reduce mechanical loads at the same time. Without de-rating the achieved control results, a move-blocking strategy is utilized and allowed to reduce the computational burden of the MPC by more than 50% compared to a baseline MPC implementation. This even allows to run the MPC on a state of the art Programmable Logic Controller.</description><subject>Control systems design</subject><subject>Leveling</subject><subject>Load alleviation</subject><subject>Multibody systems</subject><subject>Physics</subject><subject>Predictive control</subject><subject>Programmable logic controllers</subject><subject>Turbines</subject><subject>Wind turbines</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkFtLwzAYhoMoOKd_QQJeeVGbQ9PD5SwemTjYxMuQJunMrE1Nu479ezMqE0Hwu8kH3_u8gQeAc4yuMErTECcRCWKWxWHCaMhCxAgi-ACM9ofD_Z6mx-CkbVcIUT_JCJgnq3QFZ04rIzvTa_hqagUXa1eYWsPc1p2zFdyY7g0-2V4H15WV76ZewnnnRKeXW1haB6dWKDipKt0b0RlbQ-FLZnaj_Un3uvLAKTgqRdXqs-93DF5ubxb5fTB9vnvIJ9NARijtAkJ1JJKypAwrzHCaiEIXWGVZEVOkFZGSIlpGhSRCorTMsEQyxUhRJVAsKaNjcDH0Ns5-rnXb8ZVdu9p_yQlLGCEZjhOfioeUdLZtnS5548yHcFuOEd9p5TtjfGePe62c8UGrB8kAGtv8NP8LXf4BPc7y-a8cb1RJvwDxfoef</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Jassmann, U</creator><creator>Dickler, S</creator><creator>Zierath, J</creator><creator>Hakenberg, M</creator><creator>Abel, D</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20160901</creationdate><title>Model Predictive Wind Turbine Control with Move-Blocking Strategy for Load Alleviation and Power Leveling</title><author>Jassmann, U ; Dickler, S ; Zierath, J ; Hakenberg, M ; Abel, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-23e4a7ff351d15187abeb1d99b630ed2cc303f4bc2ac08f91c0c810d3da06c353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Control systems design</topic><topic>Leveling</topic><topic>Load alleviation</topic><topic>Multibody systems</topic><topic>Physics</topic><topic>Predictive control</topic><topic>Programmable logic controllers</topic><topic>Turbines</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jassmann, U</creatorcontrib><creatorcontrib>Dickler, S</creatorcontrib><creatorcontrib>Zierath, J</creatorcontrib><creatorcontrib>Hakenberg, M</creatorcontrib><creatorcontrib>Abel, D</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jassmann, U</au><au>Dickler, S</au><au>Zierath, J</au><au>Hakenberg, M</au><au>Abel, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Predictive Wind Turbine Control with Move-Blocking Strategy for Load Alleviation and Power Leveling</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>753</volume><issue>5</issue><spage>52021</spage><pages>52021-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>This contribution presents a Model Predictive Controller (MPC) with moveblocking strategy for combined power leveling and load alleviation in wind turbine operation with a focus on extreme loads. The controller is designed for a 3 MW wind turbine developed by W2E Wind to Energy GmbH and compared to a baseline controller, using a classic control scheme, which currently operates the wind turbine. All simulations are carried out with a detailed multibody simulation turbine model implemented in alaska Wind. The performance of the two different controllers is compared using a 50-year Extreme Operation Gust event, since it is one of the main design drivers for the wind turbine considered in this work. The implemented MPC is able to level electrical output power and reduce mechanical loads at the same time. Without de-rating the achieved control results, a move-blocking strategy is utilized and allowed to reduce the computational burden of the MPC by more than 50% compared to a baseline MPC implementation. This even allows to run the MPC on a state of the art Programmable Logic Controller.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/753/5/052021</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2016-09, Vol.753 (5), p.52021
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2575229167
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access)
subjects Control systems design
Leveling
Load alleviation
Multibody systems
Physics
Predictive control
Programmable logic controllers
Turbines
Wind turbines
title Model Predictive Wind Turbine Control with Move-Blocking Strategy for Load Alleviation and Power Leveling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Predictive%20Wind%20Turbine%20Control%20with%20Move-Blocking%20Strategy%20for%20Load%20Alleviation%20and%20Power%20Leveling&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Jassmann,%20U&rft.date=2016-09-01&rft.volume=753&rft.issue=5&rft.spage=52021&rft.pages=52021-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/753/5/052021&rft_dat=%3Cproquest_cross%3E2575229167%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-23e4a7ff351d15187abeb1d99b630ed2cc303f4bc2ac08f91c0c810d3da06c353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2575229167&rft_id=info:pmid/&rfr_iscdi=true