Loading…

Achieving ultrahigh-strength in beta-type titanium alloy by controlling the melt pool mode in selective laser melting

It is challenging to simultaneously achieve nearly full density and high strength in refractory alloys using selective laser melting (SLM). In this study, the achievement of ultrahigh-strength resulting from nearly full density has been reported in beta-type titanium alloy by controlling the melt po...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-08, Vol.823, p.141731, Article 141731
Main Authors: Luo, X., Yang, C., Fu, Z.Q., Liu, L.H., Lu, H.Z., Ma, H.W., Wang, Z., Li, D.D., Zhang, L.C., Li, Y.Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-cbe43d5bbc4e2fe354fd557d099243e57be0e328c776d99a00330531eda026183
cites cdi_FETCH-LOGICAL-c328t-cbe43d5bbc4e2fe354fd557d099243e57be0e328c776d99a00330531eda026183
container_end_page
container_issue
container_start_page 141731
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 823
creator Luo, X.
Yang, C.
Fu, Z.Q.
Liu, L.H.
Lu, H.Z.
Ma, H.W.
Wang, Z.
Li, D.D.
Zhang, L.C.
Li, Y.Y.
description It is challenging to simultaneously achieve nearly full density and high strength in refractory alloys using selective laser melting (SLM). In this study, the achievement of ultrahigh-strength resulting from nearly full density has been reported in beta-type titanium alloy by controlling the melt pool mode in SLM. The melt pool mode was divided into the conduction and keyhole modes, which were determined from the macroscopic morphology of the melt pool in the SLMed Ti-34.2Nb-6.8Zr-4.9Ta-2.3Si (wt%) (TNZTS) alloy single tracks in combination with the keyhole threshold (P·V−0.5 = 251.3 W (m⋅s−1)−0.5) calculated theoretically. Compared with condition mode, the keyhole mode has higher porosity and inevitably causes poor mechanical property. Fortunately, by optimizing the SLM process parameters predicted via the keyhole threshold, an ultrahigh-strength and nearly full density (99.7%) TNZTS alloy with conduction mode was obtained by SLM. The alloy exhibited an ultrahigh compressive yield strength of 1286 MPa, which was higher than the majority of the beta-type titanium alloys reported so far. The microstructural analyses indicated that the ultrahigh-strength TNZTS alloy consisted of a thin shell-shaped (Ti, Nb, Zr)2Si (S2) phase (20–50 nm) around the columnar β-Ti grain boundaries together with an ultrafine dot shaped (Ti, Nb, Zr)5Si3 (S1) phase (50–300 nm) in the β-Ti matrix. The ultrahigh strength resulted from high-density dislocations and the effective dislocation blockage by the semi-coherent S1 and coherent S2 phases, thereby leading to the dislocation-strengthening and hardening effect. The strategy utilized in this study provides the fundamental guidelines for generating refractory metallic alloys with high density and excellent performance.
doi_str_mv 10.1016/j.msea.2021.141731
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575539636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321009990</els_id><sourcerecordid>2575539636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-cbe43d5bbc4e2fe354fd557d099243e57be0e328c776d99a00330531eda026183</originalsourceid><addsrcrecordid>eNp9kLtOwzAUQC0EEqXwA0yWmFP8iJNGYqkqXlIlFpgtx7lpHDlxsZ1K-XsSwszk5Zx7rw9C95RsKKHZY7vpAqgNI4xuaEpzTi_Qim5znqQFzy7RihSMJoIU_BrdhNASQmhKxAoNO90YOJv-iAcbvWrMsUlC9NAfY4NNj0uIKonjCXA0UfVm6LCy1o24HLF2ffTO2tmODeAObMQn5yzuXAWzHcCCjuYM2KoA_peY6Ft0VSsb4O7vXaOvl-fP_Vty-Hh93-8OieZsGxNdQsorUZY6BVYDF2ldCZFXpChYykHkJRCYSJ3nWVUUihDOieAUKkVYRrd8jR6WuSfvvgcIUbZu8P20UjKRC8GLjGcTxRZKexeCh1qevOmUHyUlcs4rWznnlXNeueSdpKdFgun-swEvgzbQa6iMn74sK2f-038AqNmE9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575539636</pqid></control><display><type>article</type><title>Achieving ultrahigh-strength in beta-type titanium alloy by controlling the melt pool mode in selective laser melting</title><source>ScienceDirect Journals</source><creator>Luo, X. ; Yang, C. ; Fu, Z.Q. ; Liu, L.H. ; Lu, H.Z. ; Ma, H.W. ; Wang, Z. ; Li, D.D. ; Zhang, L.C. ; Li, Y.Y.</creator><creatorcontrib>Luo, X. ; Yang, C. ; Fu, Z.Q. ; Liu, L.H. ; Lu, H.Z. ; Ma, H.W. ; Wang, Z. ; Li, D.D. ; Zhang, L.C. ; Li, Y.Y.</creatorcontrib><description>It is challenging to simultaneously achieve nearly full density and high strength in refractory alloys using selective laser melting (SLM). In this study, the achievement of ultrahigh-strength resulting from nearly full density has been reported in beta-type titanium alloy by controlling the melt pool mode in SLM. The melt pool mode was divided into the conduction and keyhole modes, which were determined from the macroscopic morphology of the melt pool in the SLMed Ti-34.2Nb-6.8Zr-4.9Ta-2.3Si (wt%) (TNZTS) alloy single tracks in combination with the keyhole threshold (P·V−0.5 = 251.3 W (m⋅s−1)−0.5) calculated theoretically. Compared with condition mode, the keyhole mode has higher porosity and inevitably causes poor mechanical property. Fortunately, by optimizing the SLM process parameters predicted via the keyhole threshold, an ultrahigh-strength and nearly full density (99.7%) TNZTS alloy with conduction mode was obtained by SLM. The alloy exhibited an ultrahigh compressive yield strength of 1286 MPa, which was higher than the majority of the beta-type titanium alloys reported so far. The microstructural analyses indicated that the ultrahigh-strength TNZTS alloy consisted of a thin shell-shaped (Ti, Nb, Zr)2Si (S2) phase (20–50 nm) around the columnar β-Ti grain boundaries together with an ultrafine dot shaped (Ti, Nb, Zr)5Si3 (S1) phase (50–300 nm) in the β-Ti matrix. The ultrahigh strength resulted from high-density dislocations and the effective dislocation blockage by the semi-coherent S1 and coherent S2 phases, thereby leading to the dislocation-strengthening and hardening effect. The strategy utilized in this study provides the fundamental guidelines for generating refractory metallic alloys with high density and excellent performance.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.141731</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Beta-type titanium alloys ; Compressive strength ; Dislocation density ; Grain boundaries ; High strength alloys ; Laser beam melting ; Microstructure ; Morphology ; Niobium ; Process parameters ; Refractory alloys ; Selective laser melting ; Single track ; Thin walled shells ; Titanium alloys ; Titanium base alloys ; Ultrafines ; Zirconium</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2021-08, Vol.823, p.141731, Article 141731</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 17, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-cbe43d5bbc4e2fe354fd557d099243e57be0e328c776d99a00330531eda026183</citedby><cites>FETCH-LOGICAL-c328t-cbe43d5bbc4e2fe354fd557d099243e57be0e328c776d99a00330531eda026183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Luo, X.</creatorcontrib><creatorcontrib>Yang, C.</creatorcontrib><creatorcontrib>Fu, Z.Q.</creatorcontrib><creatorcontrib>Liu, L.H.</creatorcontrib><creatorcontrib>Lu, H.Z.</creatorcontrib><creatorcontrib>Ma, H.W.</creatorcontrib><creatorcontrib>Wang, Z.</creatorcontrib><creatorcontrib>Li, D.D.</creatorcontrib><creatorcontrib>Zhang, L.C.</creatorcontrib><creatorcontrib>Li, Y.Y.</creatorcontrib><title>Achieving ultrahigh-strength in beta-type titanium alloy by controlling the melt pool mode in selective laser melting</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>It is challenging to simultaneously achieve nearly full density and high strength in refractory alloys using selective laser melting (SLM). In this study, the achievement of ultrahigh-strength resulting from nearly full density has been reported in beta-type titanium alloy by controlling the melt pool mode in SLM. The melt pool mode was divided into the conduction and keyhole modes, which were determined from the macroscopic morphology of the melt pool in the SLMed Ti-34.2Nb-6.8Zr-4.9Ta-2.3Si (wt%) (TNZTS) alloy single tracks in combination with the keyhole threshold (P·V−0.5 = 251.3 W (m⋅s−1)−0.5) calculated theoretically. Compared with condition mode, the keyhole mode has higher porosity and inevitably causes poor mechanical property. Fortunately, by optimizing the SLM process parameters predicted via the keyhole threshold, an ultrahigh-strength and nearly full density (99.7%) TNZTS alloy with conduction mode was obtained by SLM. The alloy exhibited an ultrahigh compressive yield strength of 1286 MPa, which was higher than the majority of the beta-type titanium alloys reported so far. The microstructural analyses indicated that the ultrahigh-strength TNZTS alloy consisted of a thin shell-shaped (Ti, Nb, Zr)2Si (S2) phase (20–50 nm) around the columnar β-Ti grain boundaries together with an ultrafine dot shaped (Ti, Nb, Zr)5Si3 (S1) phase (50–300 nm) in the β-Ti matrix. The ultrahigh strength resulted from high-density dislocations and the effective dislocation blockage by the semi-coherent S1 and coherent S2 phases, thereby leading to the dislocation-strengthening and hardening effect. The strategy utilized in this study provides the fundamental guidelines for generating refractory metallic alloys with high density and excellent performance.</description><subject>Beta-type titanium alloys</subject><subject>Compressive strength</subject><subject>Dislocation density</subject><subject>Grain boundaries</subject><subject>High strength alloys</subject><subject>Laser beam melting</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Niobium</subject><subject>Process parameters</subject><subject>Refractory alloys</subject><subject>Selective laser melting</subject><subject>Single track</subject><subject>Thin walled shells</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Ultrafines</subject><subject>Zirconium</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUQC0EEqXwA0yWmFP8iJNGYqkqXlIlFpgtx7lpHDlxsZ1K-XsSwszk5Zx7rw9C95RsKKHZY7vpAqgNI4xuaEpzTi_Qim5znqQFzy7RihSMJoIU_BrdhNASQmhKxAoNO90YOJv-iAcbvWrMsUlC9NAfY4NNj0uIKonjCXA0UfVm6LCy1o24HLF2ffTO2tmODeAObMQn5yzuXAWzHcCCjuYM2KoA_peY6Ft0VSsb4O7vXaOvl-fP_Vty-Hh93-8OieZsGxNdQsorUZY6BVYDF2ldCZFXpChYykHkJRCYSJ3nWVUUihDOieAUKkVYRrd8jR6WuSfvvgcIUbZu8P20UjKRC8GLjGcTxRZKexeCh1qevOmUHyUlcs4rWznnlXNeueSdpKdFgun-swEvgzbQa6iMn74sK2f-038AqNmE9A</recordid><startdate>20210817</startdate><enddate>20210817</enddate><creator>Luo, X.</creator><creator>Yang, C.</creator><creator>Fu, Z.Q.</creator><creator>Liu, L.H.</creator><creator>Lu, H.Z.</creator><creator>Ma, H.W.</creator><creator>Wang, Z.</creator><creator>Li, D.D.</creator><creator>Zhang, L.C.</creator><creator>Li, Y.Y.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210817</creationdate><title>Achieving ultrahigh-strength in beta-type titanium alloy by controlling the melt pool mode in selective laser melting</title><author>Luo, X. ; Yang, C. ; Fu, Z.Q. ; Liu, L.H. ; Lu, H.Z. ; Ma, H.W. ; Wang, Z. ; Li, D.D. ; Zhang, L.C. ; Li, Y.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-cbe43d5bbc4e2fe354fd557d099243e57be0e328c776d99a00330531eda026183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Beta-type titanium alloys</topic><topic>Compressive strength</topic><topic>Dislocation density</topic><topic>Grain boundaries</topic><topic>High strength alloys</topic><topic>Laser beam melting</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Niobium</topic><topic>Process parameters</topic><topic>Refractory alloys</topic><topic>Selective laser melting</topic><topic>Single track</topic><topic>Thin walled shells</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Ultrafines</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, X.</creatorcontrib><creatorcontrib>Yang, C.</creatorcontrib><creatorcontrib>Fu, Z.Q.</creatorcontrib><creatorcontrib>Liu, L.H.</creatorcontrib><creatorcontrib>Lu, H.Z.</creatorcontrib><creatorcontrib>Ma, H.W.</creatorcontrib><creatorcontrib>Wang, Z.</creatorcontrib><creatorcontrib>Li, D.D.</creatorcontrib><creatorcontrib>Zhang, L.C.</creatorcontrib><creatorcontrib>Li, Y.Y.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, X.</au><au>Yang, C.</au><au>Fu, Z.Q.</au><au>Liu, L.H.</au><au>Lu, H.Z.</au><au>Ma, H.W.</au><au>Wang, Z.</au><au>Li, D.D.</au><au>Zhang, L.C.</au><au>Li, Y.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving ultrahigh-strength in beta-type titanium alloy by controlling the melt pool mode in selective laser melting</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-08-17</date><risdate>2021</risdate><volume>823</volume><spage>141731</spage><pages>141731-</pages><artnum>141731</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>It is challenging to simultaneously achieve nearly full density and high strength in refractory alloys using selective laser melting (SLM). In this study, the achievement of ultrahigh-strength resulting from nearly full density has been reported in beta-type titanium alloy by controlling the melt pool mode in SLM. The melt pool mode was divided into the conduction and keyhole modes, which were determined from the macroscopic morphology of the melt pool in the SLMed Ti-34.2Nb-6.8Zr-4.9Ta-2.3Si (wt%) (TNZTS) alloy single tracks in combination with the keyhole threshold (P·V−0.5 = 251.3 W (m⋅s−1)−0.5) calculated theoretically. Compared with condition mode, the keyhole mode has higher porosity and inevitably causes poor mechanical property. Fortunately, by optimizing the SLM process parameters predicted via the keyhole threshold, an ultrahigh-strength and nearly full density (99.7%) TNZTS alloy with conduction mode was obtained by SLM. The alloy exhibited an ultrahigh compressive yield strength of 1286 MPa, which was higher than the majority of the beta-type titanium alloys reported so far. The microstructural analyses indicated that the ultrahigh-strength TNZTS alloy consisted of a thin shell-shaped (Ti, Nb, Zr)2Si (S2) phase (20–50 nm) around the columnar β-Ti grain boundaries together with an ultrafine dot shaped (Ti, Nb, Zr)5Si3 (S1) phase (50–300 nm) in the β-Ti matrix. The ultrahigh strength resulted from high-density dislocations and the effective dislocation blockage by the semi-coherent S1 and coherent S2 phases, thereby leading to the dislocation-strengthening and hardening effect. The strategy utilized in this study provides the fundamental guidelines for generating refractory metallic alloys with high density and excellent performance.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.141731</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-08, Vol.823, p.141731, Article 141731
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2575539636
source ScienceDirect Journals
subjects Beta-type titanium alloys
Compressive strength
Dislocation density
Grain boundaries
High strength alloys
Laser beam melting
Microstructure
Morphology
Niobium
Process parameters
Refractory alloys
Selective laser melting
Single track
Thin walled shells
Titanium alloys
Titanium base alloys
Ultrafines
Zirconium
title Achieving ultrahigh-strength in beta-type titanium alloy by controlling the melt pool mode in selective laser melting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20ultrahigh-strength%20in%20beta-type%20titanium%20alloy%20by%20controlling%20the%20melt%20pool%20mode%20in%20selective%20laser%20melting&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Luo,%20X.&rft.date=2021-08-17&rft.volume=823&rft.spage=141731&rft.pages=141731-&rft.artnum=141731&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.141731&rft_dat=%3Cproquest_cross%3E2575539636%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-cbe43d5bbc4e2fe354fd557d099243e57be0e328c776d99a00330531eda026183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2575539636&rft_id=info:pmid/&rfr_iscdi=true