Loading…
Prediction of optimum Palm Oil Methyl Ester fuel blend for compression ignition engine using Response Surface Methodology
Electric mobility slowly catches up trend in automotive sales but still it has not got the wide expected reception as typical liquid fueled vehicle due to the electric vehicles range. But the high energy density of liquid fuel is still unmatched for the performance of an electric battery. Decreasing...
Saved in:
Published in: | Energy (Oxford) 2021-11, Vol.234, p.121238, Article 121238 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electric mobility slowly catches up trend in automotive sales but still it has not got the wide expected reception as typical liquid fueled vehicle due to the electric vehicles range. But the high energy density of liquid fuel is still unmatched for the performance of an electric battery. Decreasing Air Quality Index (AQI) from use of conventional fuels are alarming due to its impact on human health. These facts thrust the need for deeper study into alternative fuel research area and Malaysia being one of the largest producers of Palm Oil Methyl Ester (POME), motivates us to proceed into investigative analysis of POME fueled engine using a mathematical technique called Response Surface Methodology (RSM). Highest BSFC attained was 508.9 g/kWhr and 546.5 g/kWhr for diesel and POME50 at 3850 rpm and 25% load. Lowest O2 emissions were recorded at 4.1% and 4.4% for diesel and POME10 respectively at 1600 rpm and 100% load. Optimized engine operation was predicted with 41.21% POME as the best blend giving the best compromise in best performance and low emissions.
•Use of POME10 resulted in high CO2 emissions.•POME20 gave high NOx emissions.•Fuel blend of 41.21% POME was selected after optimization. |
---|---|
ISSN: | 0360-5442 1873-6785 |
DOI: | 10.1016/j.energy.2021.121238 |