Loading…
An augmented subgradient method for minimizing nonsmooth DC functions
A method, called an augmented subgradient method, is developed to solve unconstrained nonsmooth difference of convex (DC) optimization problems. At each iteration of this method search directions are found by using several subgradients of the first DC component and one subgradient of the second DC c...
Saved in:
Published in: | Computational optimization and applications 2021-11, Vol.80 (2), p.411-438 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-5168530f66c6dc57937e1c987cedf39050fb2c9f647091c8700974c165bb74863 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-5168530f66c6dc57937e1c987cedf39050fb2c9f647091c8700974c165bb74863 |
container_end_page | 438 |
container_issue | 2 |
container_start_page | 411 |
container_title | Computational optimization and applications |
container_volume | 80 |
creator | Bagirov, A. M. Hoseini Monjezi, N. Taheri, S. |
description | A method, called an augmented subgradient method, is developed to solve unconstrained nonsmooth difference of convex (DC) optimization problems. At each iteration of this method search directions are found by using several subgradients of the first DC component and one subgradient of the second DC component of the objective function. The developed method applies an Armijo-type line search procedure to find the next iteration point. It is proved that the sequence of points generated by the method converges to a critical point of the unconstrained DC optimization problem. The performance of the method is demonstrated using academic test problems with nonsmooth DC objective functions and its performance is compared with that of two general nonsmooth optimization solvers and five solvers specifically designed for unconstrained DC optimization. Computational results show that the developed method is efficient and robust for solving nonsmooth DC optimization problems. |
doi_str_mv | 10.1007/s10589-021-00304-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575663824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575663824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5168530f66c6dc57937e1c987cedf39050fb2c9f647091c8700974c165bb74863</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBZgsMRvOdmzHY1XKH6kSC8xW4thpKmIXOxng05MSJDam09299-70Q-iawi0FUHeZgig1AUYJAIeCFCdoQYXihJW6OEUL0EwSOe3O0UXOewDQirMF2qwCrsa2d2FwDc5j3aaq6aYO927YxQb7mHDfha7vvrrQ4hBD7mMcdvh-jf0Y7NBNk0t05qv37K5-6xK9PWxe109k-_L4vF5tieVUD0RQWQoOXkorGyuU5spRq0tlXeO5BgG-ZlZ7WSjQ1Jbq-GVhqRR1rYpS8iW6mXMPKX6MLg9mH8cUppOGCSWk5CUrJhWbVTbFnJPz5pC6vkqfhoI54jIzLjPhMj-4zNHEZ1OexKF16S_6H9c3BqVsJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575663824</pqid></control><display><type>article</type><title>An augmented subgradient method for minimizing nonsmooth DC functions</title><source>Business Source Ultimate</source><source>ABI/INFORM global</source><source>Springer Link</source><creator>Bagirov, A. M. ; Hoseini Monjezi, N. ; Taheri, S.</creator><creatorcontrib>Bagirov, A. M. ; Hoseini Monjezi, N. ; Taheri, S.</creatorcontrib><description>A method, called an augmented subgradient method, is developed to solve unconstrained nonsmooth difference of convex (DC) optimization problems. At each iteration of this method search directions are found by using several subgradients of the first DC component and one subgradient of the second DC component of the objective function. The developed method applies an Armijo-type line search procedure to find the next iteration point. It is proved that the sequence of points generated by the method converges to a critical point of the unconstrained DC optimization problem. The performance of the method is demonstrated using academic test problems with nonsmooth DC objective functions and its performance is compared with that of two general nonsmooth optimization solvers and five solvers specifically designed for unconstrained DC optimization. Computational results show that the developed method is efficient and robust for solving nonsmooth DC optimization problems.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-021-00304-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Convex and Discrete Geometry ; Critical point ; Iterative methods ; Management Science ; Mathematics ; Mathematics and Statistics ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Solvers ; Statistics</subject><ispartof>Computational optimization and applications, 2021-11, Vol.80 (2), p.411-438</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5168530f66c6dc57937e1c987cedf39050fb2c9f647091c8700974c165bb74863</citedby><cites>FETCH-LOGICAL-c319t-5168530f66c6dc57937e1c987cedf39050fb2c9f647091c8700974c165bb74863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2575663824/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2575663824?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,44342,74641</link.rule.ids></links><search><creatorcontrib>Bagirov, A. M.</creatorcontrib><creatorcontrib>Hoseini Monjezi, N.</creatorcontrib><creatorcontrib>Taheri, S.</creatorcontrib><title>An augmented subgradient method for minimizing nonsmooth DC functions</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>A method, called an augmented subgradient method, is developed to solve unconstrained nonsmooth difference of convex (DC) optimization problems. At each iteration of this method search directions are found by using several subgradients of the first DC component and one subgradient of the second DC component of the objective function. The developed method applies an Armijo-type line search procedure to find the next iteration point. It is proved that the sequence of points generated by the method converges to a critical point of the unconstrained DC optimization problem. The performance of the method is demonstrated using academic test problems with nonsmooth DC objective functions and its performance is compared with that of two general nonsmooth optimization solvers and five solvers specifically designed for unconstrained DC optimization. Computational results show that the developed method is efficient and robust for solving nonsmooth DC optimization problems.</description><subject>Convex and Discrete Geometry</subject><subject>Critical point</subject><subject>Iterative methods</subject><subject>Management Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Solvers</subject><subject>Statistics</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kD9PwzAQxS0EEqXwBZgsMRvOdmzHY1XKH6kSC8xW4thpKmIXOxng05MSJDam09299-70Q-iawi0FUHeZgig1AUYJAIeCFCdoQYXihJW6OEUL0EwSOe3O0UXOewDQirMF2qwCrsa2d2FwDc5j3aaq6aYO927YxQb7mHDfha7vvrrQ4hBD7mMcdvh-jf0Y7NBNk0t05qv37K5-6xK9PWxe109k-_L4vF5tieVUD0RQWQoOXkorGyuU5spRq0tlXeO5BgG-ZlZ7WSjQ1Jbq-GVhqRR1rYpS8iW6mXMPKX6MLg9mH8cUppOGCSWk5CUrJhWbVTbFnJPz5pC6vkqfhoI54jIzLjPhMj-4zNHEZ1OexKF16S_6H9c3BqVsJA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Bagirov, A. M.</creator><creator>Hoseini Monjezi, N.</creator><creator>Taheri, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20211101</creationdate><title>An augmented subgradient method for minimizing nonsmooth DC functions</title><author>Bagirov, A. M. ; Hoseini Monjezi, N. ; Taheri, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5168530f66c6dc57937e1c987cedf39050fb2c9f647091c8700974c165bb74863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convex and Discrete Geometry</topic><topic>Critical point</topic><topic>Iterative methods</topic><topic>Management Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Solvers</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagirov, A. M.</creatorcontrib><creatorcontrib>Hoseini Monjezi, N.</creatorcontrib><creatorcontrib>Taheri, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagirov, A. M.</au><au>Hoseini Monjezi, N.</au><au>Taheri, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An augmented subgradient method for minimizing nonsmooth DC functions</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>80</volume><issue>2</issue><spage>411</spage><epage>438</epage><pages>411-438</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>A method, called an augmented subgradient method, is developed to solve unconstrained nonsmooth difference of convex (DC) optimization problems. At each iteration of this method search directions are found by using several subgradients of the first DC component and one subgradient of the second DC component of the objective function. The developed method applies an Armijo-type line search procedure to find the next iteration point. It is proved that the sequence of points generated by the method converges to a critical point of the unconstrained DC optimization problem. The performance of the method is demonstrated using academic test problems with nonsmooth DC objective functions and its performance is compared with that of two general nonsmooth optimization solvers and five solvers specifically designed for unconstrained DC optimization. Computational results show that the developed method is efficient and robust for solving nonsmooth DC optimization problems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-021-00304-4</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-6003 |
ispartof | Computational optimization and applications, 2021-11, Vol.80 (2), p.411-438 |
issn | 0926-6003 1573-2894 |
language | eng |
recordid | cdi_proquest_journals_2575663824 |
source | Business Source Ultimate; ABI/INFORM global; Springer Link |
subjects | Convex and Discrete Geometry Critical point Iterative methods Management Science Mathematics Mathematics and Statistics Operations Research Operations Research/Decision Theory Optimization Solvers Statistics |
title | An augmented subgradient method for minimizing nonsmooth DC functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20augmented%20subgradient%20method%20for%20minimizing%20nonsmooth%20DC%20functions&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Bagirov,%20A.%20M.&rft.date=2021-11-01&rft.volume=80&rft.issue=2&rft.spage=411&rft.epage=438&rft.pages=411-438&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-021-00304-4&rft_dat=%3Cproquest_cross%3E2575663824%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-5168530f66c6dc57937e1c987cedf39050fb2c9f647091c8700974c165bb74863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2575663824&rft_id=info:pmid/&rfr_iscdi=true |