Loading…

Exploring the influence of nickel precursors on constructing efficient Ni-based CO2 methanation catalysts assisted with in-situ technologies

[Display omitted] •A series of Ni/SiO2 catalysts were prepared with different nickel salt precursors.•The intermediates of calcination process studied by in-situ DRIFTS and online TG-MS.•The catalyst with nickel acetylacetonate precursor performed the highest activity.•The precursor influenced the N...

Full description

Saved in:
Bibliographic Details
Published in:Applied catalysis. B, Environmental Environmental, 2021-11, Vol.297, p.120486, Article 120486
Main Authors: Wen, Xueying, Xu, Leilei, Chen, Mindong, Shi, Yiyu, Lv, Chufei, Cui, Yan, Wu, Xianyun, Cheng, Ge, Wu, Cai-e, Miao, Zhichao, Wang, Fagen, Hu, Xun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c264t-934bffdda4cc782641224c063ad7ab0000470242eee9afa460b0ebdd853bae723
cites cdi_FETCH-LOGICAL-c264t-934bffdda4cc782641224c063ad7ab0000470242eee9afa460b0ebdd853bae723
container_end_page
container_issue
container_start_page 120486
container_title Applied catalysis. B, Environmental
container_volume 297
creator Wen, Xueying
Xu, Leilei
Chen, Mindong
Shi, Yiyu
Lv, Chufei
Cui, Yan
Wu, Xianyun
Cheng, Ge
Wu, Cai-e
Miao, Zhichao
Wang, Fagen
Hu, Xun
description [Display omitted] •A series of Ni/SiO2 catalysts were prepared with different nickel salt precursors.•The intermediates of calcination process studied by in-situ DRIFTS and online TG-MS.•The catalyst with nickel acetylacetonate precursor performed the highest activity.•The precursor influenced the Ni dispersion and strength of metal-support interaction.•The precursor determined the reaction pathway and apparent activation energy. In this work, a series of Ni-based CO2 methanation catalysts were prepared with different nickel salt precursors. The Ni-AA catalyst with nickel acetylacetonate precursor displayed the highest activity among these catalysts. The in-situ diffused reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS) and the online-tandem thermogravimetric mass spectrometry (TG-MS) were performed to investigate the intermediates of the catalyst calcination process. The superior performance of the Ni-AA catalyst could be derived from its special coordinating anion. Furthermore, the rapid deactivation of the Ni-S catalyst with nickel sulfate precursor was attributed to the generation of the Ni3S2 after reduction pretreatment. As for the Ni-Cl catalyst with nickel chloride precursor, its negligible activity could be owing to poisoning effect of the Cl− by the coverage of the catalyst surface. Therefore, the significant role of the metal salt precursor should be preferentially considered when designing the Ni-based catalysts and even other metal based heterogeneous catalysts.
doi_str_mv 10.1016/j.apcatb.2021.120486
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575938873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337321006123</els_id><sourcerecordid>2575938873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-934bffdda4cc782641224c063ad7ab0000470242eee9afa460b0ebdd853bae723</originalsourceid><addsrcrecordid>eNp9kMtO4zAUhi0E0pQybzALS6zTcWw3STcjoYrLSAg2sLYc57h1J9jBxwH6DvPQOAprVkc6-i_6P0J-lWxVsrL6fVjpwejUrjjj5arkTDbVCVmUTS0K0TTilCzYhleFELX4Qc4RD4wxLnizIP-vP4Y-ROd3NO2BOm_7EbwBGiz1zvyDng4RzBgxRKTBUxM8pjiaNFnAWmcc-EQfXNFqhI5uHzl9gbTXXic36XXS_RETUo3oMGXJu0v73FSgSyNNYPY-9GHnAC_ImdU9ws-vuyTPN9dP27vi_vH27_bqvjC8kqnYCNla23VaGlM3-VVyLg2rhO5q3eZpTNaMSw4AG221rFjLoO26Zi1aDTUXS3I55w4xvI6ASR3CGH2uVHxdrzeZWS2ySs4qEwNiBKuG6F50PKqSqYm7OqiZu5q4q5l7tv2ZbZAXvDmICidEBjqXQSbVBfd9wCdKQZDi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575938873</pqid></control><display><type>article</type><title>Exploring the influence of nickel precursors on constructing efficient Ni-based CO2 methanation catalysts assisted with in-situ technologies</title><source>ScienceDirect Freedom Collection</source><creator>Wen, Xueying ; Xu, Leilei ; Chen, Mindong ; Shi, Yiyu ; Lv, Chufei ; Cui, Yan ; Wu, Xianyun ; Cheng, Ge ; Wu, Cai-e ; Miao, Zhichao ; Wang, Fagen ; Hu, Xun</creator><creatorcontrib>Wen, Xueying ; Xu, Leilei ; Chen, Mindong ; Shi, Yiyu ; Lv, Chufei ; Cui, Yan ; Wu, Xianyun ; Cheng, Ge ; Wu, Cai-e ; Miao, Zhichao ; Wang, Fagen ; Hu, Xun</creatorcontrib><description>[Display omitted] •A series of Ni/SiO2 catalysts were prepared with different nickel salt precursors.•The intermediates of calcination process studied by in-situ DRIFTS and online TG-MS.•The catalyst with nickel acetylacetonate precursor performed the highest activity.•The precursor influenced the Ni dispersion and strength of metal-support interaction.•The precursor determined the reaction pathway and apparent activation energy. In this work, a series of Ni-based CO2 methanation catalysts were prepared with different nickel salt precursors. The Ni-AA catalyst with nickel acetylacetonate precursor displayed the highest activity among these catalysts. The in-situ diffused reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS) and the online-tandem thermogravimetric mass spectrometry (TG-MS) were performed to investigate the intermediates of the catalyst calcination process. The superior performance of the Ni-AA catalyst could be derived from its special coordinating anion. Furthermore, the rapid deactivation of the Ni-S catalyst with nickel sulfate precursor was attributed to the generation of the Ni3S2 after reduction pretreatment. As for the Ni-Cl catalyst with nickel chloride precursor, its negligible activity could be owing to poisoning effect of the Cl− by the coverage of the catalyst surface. Therefore, the significant role of the metal salt precursor should be preferentially considered when designing the Ni-based catalysts and even other metal based heterogeneous catalysts.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2021.120486</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon dioxide ; Catalysts ; CO2 methanation ; Deactivation ; Fourier transforms ; In-situ DRIFTS ; Intermediates ; Mass spectrometry ; Mass spectroscopy ; Methanation ; Nickel ; Nickel chloride ; Nickel salt precursors ; Nickel sulfate ; Nickel sulfide ; Online-tandem TG-MS ; Precursors ; Reaction intermediates</subject><ispartof>Applied catalysis. B, Environmental, 2021-11, Vol.297, p.120486, Article 120486</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Nov 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-934bffdda4cc782641224c063ad7ab0000470242eee9afa460b0ebdd853bae723</citedby><cites>FETCH-LOGICAL-c264t-934bffdda4cc782641224c063ad7ab0000470242eee9afa460b0ebdd853bae723</cites><orcidid>0000-0002-1029-9603 ; 0000-0003-4467-2178 ; 0000-0002-0666-0144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wen, Xueying</creatorcontrib><creatorcontrib>Xu, Leilei</creatorcontrib><creatorcontrib>Chen, Mindong</creatorcontrib><creatorcontrib>Shi, Yiyu</creatorcontrib><creatorcontrib>Lv, Chufei</creatorcontrib><creatorcontrib>Cui, Yan</creatorcontrib><creatorcontrib>Wu, Xianyun</creatorcontrib><creatorcontrib>Cheng, Ge</creatorcontrib><creatorcontrib>Wu, Cai-e</creatorcontrib><creatorcontrib>Miao, Zhichao</creatorcontrib><creatorcontrib>Wang, Fagen</creatorcontrib><creatorcontrib>Hu, Xun</creatorcontrib><title>Exploring the influence of nickel precursors on constructing efficient Ni-based CO2 methanation catalysts assisted with in-situ technologies</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •A series of Ni/SiO2 catalysts were prepared with different nickel salt precursors.•The intermediates of calcination process studied by in-situ DRIFTS and online TG-MS.•The catalyst with nickel acetylacetonate precursor performed the highest activity.•The precursor influenced the Ni dispersion and strength of metal-support interaction.•The precursor determined the reaction pathway and apparent activation energy. In this work, a series of Ni-based CO2 methanation catalysts were prepared with different nickel salt precursors. The Ni-AA catalyst with nickel acetylacetonate precursor displayed the highest activity among these catalysts. The in-situ diffused reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS) and the online-tandem thermogravimetric mass spectrometry (TG-MS) were performed to investigate the intermediates of the catalyst calcination process. The superior performance of the Ni-AA catalyst could be derived from its special coordinating anion. Furthermore, the rapid deactivation of the Ni-S catalyst with nickel sulfate precursor was attributed to the generation of the Ni3S2 after reduction pretreatment. As for the Ni-Cl catalyst with nickel chloride precursor, its negligible activity could be owing to poisoning effect of the Cl− by the coverage of the catalyst surface. Therefore, the significant role of the metal salt precursor should be preferentially considered when designing the Ni-based catalysts and even other metal based heterogeneous catalysts.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>CO2 methanation</subject><subject>Deactivation</subject><subject>Fourier transforms</subject><subject>In-situ DRIFTS</subject><subject>Intermediates</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Methanation</subject><subject>Nickel</subject><subject>Nickel chloride</subject><subject>Nickel salt precursors</subject><subject>Nickel sulfate</subject><subject>Nickel sulfide</subject><subject>Online-tandem TG-MS</subject><subject>Precursors</subject><subject>Reaction intermediates</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtO4zAUhi0E0pQybzALS6zTcWw3STcjoYrLSAg2sLYc57h1J9jBxwH6DvPQOAprVkc6-i_6P0J-lWxVsrL6fVjpwejUrjjj5arkTDbVCVmUTS0K0TTilCzYhleFELX4Qc4RD4wxLnizIP-vP4Y-ROd3NO2BOm_7EbwBGiz1zvyDng4RzBgxRKTBUxM8pjiaNFnAWmcc-EQfXNFqhI5uHzl9gbTXXic36XXS_RETUo3oMGXJu0v73FSgSyNNYPY-9GHnAC_ImdU9ws-vuyTPN9dP27vi_vH27_bqvjC8kqnYCNla23VaGlM3-VVyLg2rhO5q3eZpTNaMSw4AG221rFjLoO26Zi1aDTUXS3I55w4xvI6ASR3CGH2uVHxdrzeZWS2ySs4qEwNiBKuG6F50PKqSqYm7OqiZu5q4q5l7tv2ZbZAXvDmICidEBjqXQSbVBfd9wCdKQZDi</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Wen, Xueying</creator><creator>Xu, Leilei</creator><creator>Chen, Mindong</creator><creator>Shi, Yiyu</creator><creator>Lv, Chufei</creator><creator>Cui, Yan</creator><creator>Wu, Xianyun</creator><creator>Cheng, Ge</creator><creator>Wu, Cai-e</creator><creator>Miao, Zhichao</creator><creator>Wang, Fagen</creator><creator>Hu, Xun</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1029-9603</orcidid><orcidid>https://orcid.org/0000-0003-4467-2178</orcidid><orcidid>https://orcid.org/0000-0002-0666-0144</orcidid></search><sort><creationdate>20211115</creationdate><title>Exploring the influence of nickel precursors on constructing efficient Ni-based CO2 methanation catalysts assisted with in-situ technologies</title><author>Wen, Xueying ; Xu, Leilei ; Chen, Mindong ; Shi, Yiyu ; Lv, Chufei ; Cui, Yan ; Wu, Xianyun ; Cheng, Ge ; Wu, Cai-e ; Miao, Zhichao ; Wang, Fagen ; Hu, Xun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-934bffdda4cc782641224c063ad7ab0000470242eee9afa460b0ebdd853bae723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>CO2 methanation</topic><topic>Deactivation</topic><topic>Fourier transforms</topic><topic>In-situ DRIFTS</topic><topic>Intermediates</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Methanation</topic><topic>Nickel</topic><topic>Nickel chloride</topic><topic>Nickel salt precursors</topic><topic>Nickel sulfate</topic><topic>Nickel sulfide</topic><topic>Online-tandem TG-MS</topic><topic>Precursors</topic><topic>Reaction intermediates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Xueying</creatorcontrib><creatorcontrib>Xu, Leilei</creatorcontrib><creatorcontrib>Chen, Mindong</creatorcontrib><creatorcontrib>Shi, Yiyu</creatorcontrib><creatorcontrib>Lv, Chufei</creatorcontrib><creatorcontrib>Cui, Yan</creatorcontrib><creatorcontrib>Wu, Xianyun</creatorcontrib><creatorcontrib>Cheng, Ge</creatorcontrib><creatorcontrib>Wu, Cai-e</creatorcontrib><creatorcontrib>Miao, Zhichao</creatorcontrib><creatorcontrib>Wang, Fagen</creatorcontrib><creatorcontrib>Hu, Xun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Xueying</au><au>Xu, Leilei</au><au>Chen, Mindong</au><au>Shi, Yiyu</au><au>Lv, Chufei</au><au>Cui, Yan</au><au>Wu, Xianyun</au><au>Cheng, Ge</au><au>Wu, Cai-e</au><au>Miao, Zhichao</au><au>Wang, Fagen</au><au>Hu, Xun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the influence of nickel precursors on constructing efficient Ni-based CO2 methanation catalysts assisted with in-situ technologies</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>297</volume><spage>120486</spage><pages>120486-</pages><artnum>120486</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •A series of Ni/SiO2 catalysts were prepared with different nickel salt precursors.•The intermediates of calcination process studied by in-situ DRIFTS and online TG-MS.•The catalyst with nickel acetylacetonate precursor performed the highest activity.•The precursor influenced the Ni dispersion and strength of metal-support interaction.•The precursor determined the reaction pathway and apparent activation energy. In this work, a series of Ni-based CO2 methanation catalysts were prepared with different nickel salt precursors. The Ni-AA catalyst with nickel acetylacetonate precursor displayed the highest activity among these catalysts. The in-situ diffused reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS) and the online-tandem thermogravimetric mass spectrometry (TG-MS) were performed to investigate the intermediates of the catalyst calcination process. The superior performance of the Ni-AA catalyst could be derived from its special coordinating anion. Furthermore, the rapid deactivation of the Ni-S catalyst with nickel sulfate precursor was attributed to the generation of the Ni3S2 after reduction pretreatment. As for the Ni-Cl catalyst with nickel chloride precursor, its negligible activity could be owing to poisoning effect of the Cl− by the coverage of the catalyst surface. Therefore, the significant role of the metal salt precursor should be preferentially considered when designing the Ni-based catalysts and even other metal based heterogeneous catalysts.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2021.120486</doi><orcidid>https://orcid.org/0000-0002-1029-9603</orcidid><orcidid>https://orcid.org/0000-0003-4467-2178</orcidid><orcidid>https://orcid.org/0000-0002-0666-0144</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2021-11, Vol.297, p.120486, Article 120486
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2575938873
source ScienceDirect Freedom Collection
subjects Carbon dioxide
Catalysts
CO2 methanation
Deactivation
Fourier transforms
In-situ DRIFTS
Intermediates
Mass spectrometry
Mass spectroscopy
Methanation
Nickel
Nickel chloride
Nickel salt precursors
Nickel sulfate
Nickel sulfide
Online-tandem TG-MS
Precursors
Reaction intermediates
title Exploring the influence of nickel precursors on constructing efficient Ni-based CO2 methanation catalysts assisted with in-situ technologies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20influence%20of%20nickel%20precursors%20on%20constructing%20efficient%20Ni-based%20CO2%20methanation%20catalysts%20assisted%20with%20in-situ%20technologies&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Wen,%20Xueying&rft.date=2021-11-15&rft.volume=297&rft.spage=120486&rft.pages=120486-&rft.artnum=120486&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2021.120486&rft_dat=%3Cproquest_cross%3E2575938873%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-934bffdda4cc782641224c063ad7ab0000470242eee9afa460b0ebdd853bae723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2575938873&rft_id=info:pmid/&rfr_iscdi=true