Loading…

Domain Adaptive Ensemble Learning

The problem of generalizing deep neural networks from multiple source domains to a target one is studied under two settings: When unlabeled target data is available, it is a multi-source unsupervised domain adaptation (UDA) problem, otherwise a domain generalization (DG) problem. We propose a unifie...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2021, Vol.30, p.8008-8018
Main Authors: Zhou, Kaiyang, Yang, Yongxin, Qiao, Yu, Xiang, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-d04ab80ffba6ec529efbd228187ad58341212c30ccf3ac932fa04b5b1f33c51b3
cites cdi_FETCH-LOGICAL-c371t-d04ab80ffba6ec529efbd228187ad58341212c30ccf3ac932fa04b5b1f33c51b3
container_end_page 8018
container_issue
container_start_page 8008
container_title IEEE transactions on image processing
container_volume 30
creator Zhou, Kaiyang
Yang, Yongxin
Qiao, Yu
Xiang, Tao
description The problem of generalizing deep neural networks from multiple source domains to a target one is studied under two settings: When unlabeled target data is available, it is a multi-source unsupervised domain adaptation (UDA) problem, otherwise a domain generalization (DG) problem. We propose a unified framework termed domain adaptive ensemble learning (DAEL) to address both problems. A DAEL model is composed of a CNN feature extractor shared across domains and multiple classifier heads each trained to specialize in a particular source domain. Each such classifier is an expert to its own domain but a non-expert to others. DAEL aims to learn these experts collaboratively so that when forming an ensemble, they can leverage complementary information from each other to be more effective for an unseen target domain. To this end, each source domain is used in turn as a pseudo-target-domain with its own expert providing supervisory signal to the ensemble of non-experts learned from the other sources. To deal with unlabeled target data under the UDA setting where real expert does not exist, DAEL uses pseudo labels to supervise the ensemble learning. Extensive experiments on three multi-source UDA datasets and two DG datasets show that DAEL improves the state of the art on both problems, often by significant margins.
doi_str_mv 10.1109/TIP.2021.3112012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575979731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9540778</ieee_id><sourcerecordid>2574405204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-d04ab80ffba6ec529efbd228187ad58341212c30ccf3ac932fa04b5b1f33c51b3</originalsourceid><addsrcrecordid>eNpdkDtLA0EUhQdRTHz0gk3ExmbjvfPI7JQhRg0EtIj1MDN7RzbsI-4kgv_eDQkWVvcU3zlcPsZuEMaIYB5Xi_cxB45jgcgB-QkbopGYAUh-2mdQOtMozYBdpLQGQKlwcs4GQiohIcchu3tqa1c2o2nhNtvym0bzJlHtKxotyXVN2XxesbPoqkTXx3vJPp7nq9lrtnx7WcymyywIjdusAOl8DjF6N6GguKHoC85zzLUrVC4kcuRBQAhRuGAEjw6kVx6jEEGhF5fs4bC76dqvHaWtrcsUqKpcQ-0uWa60lKA4yB69_4eu213X9N_tKWW00QJ7Cg5U6NqUOop205W1634sgt3rs70-u9dnj_r6yu2hUhLRH26UBK1z8QvFaWbq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575979731</pqid></control><display><type>article</type><title>Domain Adaptive Ensemble Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhou, Kaiyang ; Yang, Yongxin ; Qiao, Yu ; Xiang, Tao</creator><creatorcontrib>Zhou, Kaiyang ; Yang, Yongxin ; Qiao, Yu ; Xiang, Tao</creatorcontrib><description>The problem of generalizing deep neural networks from multiple source domains to a target one is studied under two settings: When unlabeled target data is available, it is a multi-source unsupervised domain adaptation (UDA) problem, otherwise a domain generalization (DG) problem. We propose a unified framework termed domain adaptive ensemble learning (DAEL) to address both problems. A DAEL model is composed of a CNN feature extractor shared across domains and multiple classifier heads each trained to specialize in a particular source domain. Each such classifier is an expert to its own domain but a non-expert to others. DAEL aims to learn these experts collaboratively so that when forming an ensemble, they can leverage complementary information from each other to be more effective for an unseen target domain. To this end, each source domain is used in turn as a pseudo-target-domain with its own expert providing supervisory signal to the ensemble of non-experts learned from the other sources. To deal with unlabeled target data under the UDA setting where real expert does not exist, DAEL uses pseudo labels to supervise the ensemble learning. Extensive experiments on three multi-source UDA datasets and two DG datasets show that DAEL improves the state of the art on both problems, often by significant margins.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2021.3112012</identifier><identifier>PMID: 34534081</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Artificial neural networks ; Classifiers ; Collaboration ; collaborative ensemble learning ; Computational modeling ; Datasets ; Domain adaptation ; domain generalization ; Domains ; Ensemble learning ; Feature extraction ; Head ; Machine learning ; Neural networks ; Training</subject><ispartof>IEEE transactions on image processing, 2021, Vol.30, p.8008-8018</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-d04ab80ffba6ec529efbd228187ad58341212c30ccf3ac932fa04b5b1f33c51b3</citedby><cites>FETCH-LOGICAL-c371t-d04ab80ffba6ec529efbd228187ad58341212c30ccf3ac932fa04b5b1f33c51b3</cites><orcidid>0000-0002-1889-2567 ; 0000-0002-8153-3903 ; 0000-0002-2530-1059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9540778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4022,27922,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Zhou, Kaiyang</creatorcontrib><creatorcontrib>Yang, Yongxin</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Xiang, Tao</creatorcontrib><title>Domain Adaptive Ensemble Learning</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>The problem of generalizing deep neural networks from multiple source domains to a target one is studied under two settings: When unlabeled target data is available, it is a multi-source unsupervised domain adaptation (UDA) problem, otherwise a domain generalization (DG) problem. We propose a unified framework termed domain adaptive ensemble learning (DAEL) to address both problems. A DAEL model is composed of a CNN feature extractor shared across domains and multiple classifier heads each trained to specialize in a particular source domain. Each such classifier is an expert to its own domain but a non-expert to others. DAEL aims to learn these experts collaboratively so that when forming an ensemble, they can leverage complementary information from each other to be more effective for an unseen target domain. To this end, each source domain is used in turn as a pseudo-target-domain with its own expert providing supervisory signal to the ensemble of non-experts learned from the other sources. To deal with unlabeled target data under the UDA setting where real expert does not exist, DAEL uses pseudo labels to supervise the ensemble learning. Extensive experiments on three multi-source UDA datasets and two DG datasets show that DAEL improves the state of the art on both problems, often by significant margins.</description><subject>Adaptation models</subject><subject>Artificial neural networks</subject><subject>Classifiers</subject><subject>Collaboration</subject><subject>collaborative ensemble learning</subject><subject>Computational modeling</subject><subject>Datasets</subject><subject>Domain adaptation</subject><subject>domain generalization</subject><subject>Domains</subject><subject>Ensemble learning</subject><subject>Feature extraction</subject><subject>Head</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkDtLA0EUhQdRTHz0gk3ExmbjvfPI7JQhRg0EtIj1MDN7RzbsI-4kgv_eDQkWVvcU3zlcPsZuEMaIYB5Xi_cxB45jgcgB-QkbopGYAUh-2mdQOtMozYBdpLQGQKlwcs4GQiohIcchu3tqa1c2o2nhNtvym0bzJlHtKxotyXVN2XxesbPoqkTXx3vJPp7nq9lrtnx7WcymyywIjdusAOl8DjF6N6GguKHoC85zzLUrVC4kcuRBQAhRuGAEjw6kVx6jEEGhF5fs4bC76dqvHaWtrcsUqKpcQ-0uWa60lKA4yB69_4eu213X9N_tKWW00QJ7Cg5U6NqUOop205W1634sgt3rs70-u9dnj_r6yu2hUhLRH26UBK1z8QvFaWbq</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhou, Kaiyang</creator><creator>Yang, Yongxin</creator><creator>Qiao, Yu</creator><creator>Xiang, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1889-2567</orcidid><orcidid>https://orcid.org/0000-0002-8153-3903</orcidid><orcidid>https://orcid.org/0000-0002-2530-1059</orcidid></search><sort><creationdate>2021</creationdate><title>Domain Adaptive Ensemble Learning</title><author>Zhou, Kaiyang ; Yang, Yongxin ; Qiao, Yu ; Xiang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-d04ab80ffba6ec529efbd228187ad58341212c30ccf3ac932fa04b5b1f33c51b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Artificial neural networks</topic><topic>Classifiers</topic><topic>Collaboration</topic><topic>collaborative ensemble learning</topic><topic>Computational modeling</topic><topic>Datasets</topic><topic>Domain adaptation</topic><topic>domain generalization</topic><topic>Domains</topic><topic>Ensemble learning</topic><topic>Feature extraction</topic><topic>Head</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Kaiyang</creatorcontrib><creatorcontrib>Yang, Yongxin</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Xiang, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Kaiyang</au><au>Yang, Yongxin</au><au>Qiao, Yu</au><au>Xiang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain Adaptive Ensemble Learning</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2021</date><risdate>2021</risdate><volume>30</volume><spage>8008</spage><epage>8018</epage><pages>8008-8018</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The problem of generalizing deep neural networks from multiple source domains to a target one is studied under two settings: When unlabeled target data is available, it is a multi-source unsupervised domain adaptation (UDA) problem, otherwise a domain generalization (DG) problem. We propose a unified framework termed domain adaptive ensemble learning (DAEL) to address both problems. A DAEL model is composed of a CNN feature extractor shared across domains and multiple classifier heads each trained to specialize in a particular source domain. Each such classifier is an expert to its own domain but a non-expert to others. DAEL aims to learn these experts collaboratively so that when forming an ensemble, they can leverage complementary information from each other to be more effective for an unseen target domain. To this end, each source domain is used in turn as a pseudo-target-domain with its own expert providing supervisory signal to the ensemble of non-experts learned from the other sources. To deal with unlabeled target data under the UDA setting where real expert does not exist, DAEL uses pseudo labels to supervise the ensemble learning. Extensive experiments on three multi-source UDA datasets and two DG datasets show that DAEL improves the state of the art on both problems, often by significant margins.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34534081</pmid><doi>10.1109/TIP.2021.3112012</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1889-2567</orcidid><orcidid>https://orcid.org/0000-0002-8153-3903</orcidid><orcidid>https://orcid.org/0000-0002-2530-1059</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2021, Vol.30, p.8008-8018
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_journals_2575979731
source IEEE Electronic Library (IEL) Journals
subjects Adaptation models
Artificial neural networks
Classifiers
Collaboration
collaborative ensemble learning
Computational modeling
Datasets
Domain adaptation
domain generalization
Domains
Ensemble learning
Feature extraction
Head
Machine learning
Neural networks
Training
title Domain Adaptive Ensemble Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20Adaptive%20Ensemble%20Learning&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zhou,%20Kaiyang&rft.date=2021&rft.volume=30&rft.spage=8008&rft.epage=8018&rft.pages=8008-8018&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2021.3112012&rft_dat=%3Cproquest_cross%3E2574405204%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-d04ab80ffba6ec529efbd228187ad58341212c30ccf3ac932fa04b5b1f33c51b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2575979731&rft_id=info:pmid/34534081&rft_ieee_id=9540778&rfr_iscdi=true