Loading…
Deep learning for fine-grained classification of jujube fruit in the natural environment
Jujube is a popular fruit with a long cultivation history and numerous varieties in China. It is necessary to develop an automatic visual identification system of jujube classification in the natural environment. However, practical success in this area is still limited. In this paper, we propose a d...
Saved in:
Published in: | Journal of food measurement & characterization 2021-10, Vol.15 (5), p.4150-4165 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-4b545bd1d8b1d57795033c38067aab399e5d25a46df80ff401da911e33f40ac13 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-4b545bd1d8b1d57795033c38067aab399e5d25a46df80ff401da911e33f40ac13 |
container_end_page | 4165 |
container_issue | 5 |
container_start_page | 4150 |
container_title | Journal of food measurement & characterization |
container_volume | 15 |
creator | Meng, Xi Yuan, Yingchun Teng, Guifa Liu, Tianzhen |
description | Jujube is a popular fruit with a long cultivation history and numerous varieties in China. It is necessary to develop an automatic visual identification system of jujube classification in the natural environment. However, practical success in this area is still limited. In this paper, we propose a deep convolutional neural network model for the fine-grained classification of jujube, which exploits a two-stream network to effectively learn discriminative features for each image from both shape level and fine-grained level simultaneously. Specifically, it can also learn the contrastive discrepancies from jujube image pairs. To further facilitate the research, we create a rich jujube image dataset in the natural environment. The dataset consists of more than 1700 images of 20 jujube varieties, and these images have a large degree of variations including angles, background and illumination conditions. The proposed model achieves an average accuracy of 84.16% on this dataset, which outperforms the other four models, including SVM, AlexNet, VGGNet-16 and ResNet-18. The feasibility of this method is demonstrated by the experiment results. |
doi_str_mv | 10.1007/s11694-021-00990-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2576142939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576142939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4b545bd1d8b1d57795033c38067aab399e5d25a46df80ff401da911e33f40ac13</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOIzzB1wFXEfvbdJ2spTxCQNuFNyFtE3GlE46JqnQf2-1ojtX5yzOAz5CzhEuEaC8ioiFFAwyZABSAhuPyCJDyZlALo5_fVacklWMLQAglkIUfEFeb4w50M7o4J3fUdsHap03bBf0JA2tOx2js67WyfWe9pa2QztUhtowuESdp-nNUK_TEHRHjf9wofd749MZObG6i2b1o0vycnf7vHlg26f7x831ltUcZWKiykVeNdisK2zyspQ5cF7zNRSl1hWX0uRNlmtRNHYN1grARktEw_nkdY18SS7m3UPo3wcTk2r7IfjpUmV5WaDIJJdTKptTdehjDMaqQ3B7HUaFoL4gqhmimiCqb4hqnEp8LsUp7Hcm_E3_0_oEvNB1VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576142939</pqid></control><display><type>article</type><title>Deep learning for fine-grained classification of jujube fruit in the natural environment</title><source>Publicly Available Content Database</source><source>Springer Nature</source><creator>Meng, Xi ; Yuan, Yingchun ; Teng, Guifa ; Liu, Tianzhen</creator><creatorcontrib>Meng, Xi ; Yuan, Yingchun ; Teng, Guifa ; Liu, Tianzhen</creatorcontrib><description>Jujube is a popular fruit with a long cultivation history and numerous varieties in China. It is necessary to develop an automatic visual identification system of jujube classification in the natural environment. However, practical success in this area is still limited. In this paper, we propose a deep convolutional neural network model for the fine-grained classification of jujube, which exploits a two-stream network to effectively learn discriminative features for each image from both shape level and fine-grained level simultaneously. Specifically, it can also learn the contrastive discrepancies from jujube image pairs. To further facilitate the research, we create a rich jujube image dataset in the natural environment. The dataset consists of more than 1700 images of 20 jujube varieties, and these images have a large degree of variations including angles, background and illumination conditions. The proposed model achieves an average accuracy of 84.16% on this dataset, which outperforms the other four models, including SVM, AlexNet, VGGNet-16 and ResNet-18. The feasibility of this method is demonstrated by the experiment results.</description><identifier>ISSN: 2193-4126</identifier><identifier>EISSN: 2193-4134</identifier><identifier>DOI: 10.1007/s11694-021-00990-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Classification ; Cultivation ; Datasets ; Engineering ; Food Science ; Fruit cultivation ; Fruits ; Machine learning ; Neural networks ; Original Paper ; Ziziphus jujuba</subject><ispartof>Journal of food measurement & characterization, 2021-10, Vol.15 (5), p.4150-4165</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4b545bd1d8b1d57795033c38067aab399e5d25a46df80ff401da911e33f40ac13</citedby><cites>FETCH-LOGICAL-c319t-4b545bd1d8b1d57795033c38067aab399e5d25a46df80ff401da911e33f40ac13</cites><orcidid>0000-0003-0068-5647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2576142939?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Meng, Xi</creatorcontrib><creatorcontrib>Yuan, Yingchun</creatorcontrib><creatorcontrib>Teng, Guifa</creatorcontrib><creatorcontrib>Liu, Tianzhen</creatorcontrib><title>Deep learning for fine-grained classification of jujube fruit in the natural environment</title><title>Journal of food measurement & characterization</title><addtitle>Food Measure</addtitle><description>Jujube is a popular fruit with a long cultivation history and numerous varieties in China. It is necessary to develop an automatic visual identification system of jujube classification in the natural environment. However, practical success in this area is still limited. In this paper, we propose a deep convolutional neural network model for the fine-grained classification of jujube, which exploits a two-stream network to effectively learn discriminative features for each image from both shape level and fine-grained level simultaneously. Specifically, it can also learn the contrastive discrepancies from jujube image pairs. To further facilitate the research, we create a rich jujube image dataset in the natural environment. The dataset consists of more than 1700 images of 20 jujube varieties, and these images have a large degree of variations including angles, background and illumination conditions. The proposed model achieves an average accuracy of 84.16% on this dataset, which outperforms the other four models, including SVM, AlexNet, VGGNet-16 and ResNet-18. The feasibility of this method is demonstrated by the experiment results.</description><subject>Artificial neural networks</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Classification</subject><subject>Cultivation</subject><subject>Datasets</subject><subject>Engineering</subject><subject>Food Science</subject><subject>Fruit cultivation</subject><subject>Fruits</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Ziziphus jujuba</subject><issn>2193-4126</issn><issn>2193-4134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kEtLxDAUhYMoOIzzB1wFXEfvbdJ2spTxCQNuFNyFtE3GlE46JqnQf2-1ojtX5yzOAz5CzhEuEaC8ioiFFAwyZABSAhuPyCJDyZlALo5_fVacklWMLQAglkIUfEFeb4w50M7o4J3fUdsHap03bBf0JA2tOx2js67WyfWe9pa2QztUhtowuESdp-nNUK_TEHRHjf9wofd749MZObG6i2b1o0vycnf7vHlg26f7x831ltUcZWKiykVeNdisK2zyspQ5cF7zNRSl1hWX0uRNlmtRNHYN1grARktEw_nkdY18SS7m3UPo3wcTk2r7IfjpUmV5WaDIJJdTKptTdehjDMaqQ3B7HUaFoL4gqhmimiCqb4hqnEp8LsUp7Hcm_E3_0_oEvNB1VA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Meng, Xi</creator><creator>Yuan, Yingchun</creator><creator>Teng, Guifa</creator><creator>Liu, Tianzhen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0068-5647</orcidid></search><sort><creationdate>20211001</creationdate><title>Deep learning for fine-grained classification of jujube fruit in the natural environment</title><author>Meng, Xi ; Yuan, Yingchun ; Teng, Guifa ; Liu, Tianzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4b545bd1d8b1d57795033c38067aab399e5d25a46df80ff401da911e33f40ac13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Classification</topic><topic>Cultivation</topic><topic>Datasets</topic><topic>Engineering</topic><topic>Food Science</topic><topic>Fruit cultivation</topic><topic>Fruits</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Ziziphus jujuba</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Xi</creatorcontrib><creatorcontrib>Yuan, Yingchun</creatorcontrib><creatorcontrib>Teng, Guifa</creatorcontrib><creatorcontrib>Liu, Tianzhen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agriculture Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of food measurement & characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Xi</au><au>Yuan, Yingchun</au><au>Teng, Guifa</au><au>Liu, Tianzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for fine-grained classification of jujube fruit in the natural environment</atitle><jtitle>Journal of food measurement & characterization</jtitle><stitle>Food Measure</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>15</volume><issue>5</issue><spage>4150</spage><epage>4165</epage><pages>4150-4165</pages><issn>2193-4126</issn><eissn>2193-4134</eissn><abstract>Jujube is a popular fruit with a long cultivation history and numerous varieties in China. It is necessary to develop an automatic visual identification system of jujube classification in the natural environment. However, practical success in this area is still limited. In this paper, we propose a deep convolutional neural network model for the fine-grained classification of jujube, which exploits a two-stream network to effectively learn discriminative features for each image from both shape level and fine-grained level simultaneously. Specifically, it can also learn the contrastive discrepancies from jujube image pairs. To further facilitate the research, we create a rich jujube image dataset in the natural environment. The dataset consists of more than 1700 images of 20 jujube varieties, and these images have a large degree of variations including angles, background and illumination conditions. The proposed model achieves an average accuracy of 84.16% on this dataset, which outperforms the other four models, including SVM, AlexNet, VGGNet-16 and ResNet-18. The feasibility of this method is demonstrated by the experiment results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11694-021-00990-y</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0068-5647</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-4126 |
ispartof | Journal of food measurement & characterization, 2021-10, Vol.15 (5), p.4150-4165 |
issn | 2193-4126 2193-4134 |
language | eng |
recordid | cdi_proquest_journals_2576142939 |
source | Publicly Available Content Database; Springer Nature |
subjects | Artificial neural networks Chemistry Chemistry and Materials Science Chemistry/Food Science Classification Cultivation Datasets Engineering Food Science Fruit cultivation Fruits Machine learning Neural networks Original Paper Ziziphus jujuba |
title | Deep learning for fine-grained classification of jujube fruit in the natural environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20fine-grained%20classification%20of%20jujube%20fruit%20in%20the%20natural%20environment&rft.jtitle=Journal%20of%20food%20measurement%20&%20characterization&rft.au=Meng,%20Xi&rft.date=2021-10-01&rft.volume=15&rft.issue=5&rft.spage=4150&rft.epage=4165&rft.pages=4150-4165&rft.issn=2193-4126&rft.eissn=2193-4134&rft_id=info:doi/10.1007/s11694-021-00990-y&rft_dat=%3Cproquest_cross%3E2576142939%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-4b545bd1d8b1d57795033c38067aab399e5d25a46df80ff401da911e33f40ac13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576142939&rft_id=info:pmid/&rfr_iscdi=true |