Loading…
Application of group analysis to the spatially homogeneous and isotropic Boltzmann equation with source using its Fourier image
Group analysis of the spatially homogeneous and molecular energy dependent Boltzmann equations with source term is carried out. The Fourier transform of the Boltzmann equation with respect to the molecular velocity variable is considered. The correspondent determining equation of the admitted Lie gr...
Saved in:
Published in: | Journal of physics. Conference series 2015-06, Vol.621 (1), p.12006 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-b48ef18e2ef2d17cb782b7ab59f0c5bf59fe13f8d3ce73c438b787482d2efe493 |
container_end_page | |
container_issue | 1 |
container_start_page | 12006 |
container_title | Journal of physics. Conference series |
container_volume | 621 |
creator | Grigoriev, Yurii N Meleshko, Sergey V Suriyawichitseranee, Amornrat |
description | Group analysis of the spatially homogeneous and molecular energy dependent Boltzmann equations with source term is carried out. The Fourier transform of the Boltzmann equation with respect to the molecular velocity variable is considered. The correspondent determining equation of the admitted Lie group is reduced to a partial differential equation for the admitted source. The latter equation is analyzed by an algebraic method. A complete group classification of the Fourier transform of the Boltzmann equation with respect to a source function is given. The representation of invariant solutions and corresponding reduced equations for all obtained source functions are also presented. |
doi_str_mv | 10.1088/1742-6596/621/1/012006 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2576367650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576367650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-b48ef18e2ef2d17cb782b7ab59f0c5bf59fe13f8d3ce73c438b787482d2efe493</originalsourceid><addsrcrecordid>eNqFkMFPwyAUxonRxDn9FwyJ51qgLbDjXJyamHjRM6EUOpaudEBj5sV_XZaaefRd3svj-748fgDcYnSPEec5ZiXJaLWgOSU4xznCBCF6Bmanh_PTzPkluAphi1CRis3A93IYOqtktK6HzsDWu3GAspfdIdgAo4Nxo2EYkkB23QFu3M61utduDEnVQBtc9G6wCj64Ln7tZN9DvR-nvE8bNzC40SsNx2D7FtoY4DotrPbQ7mSrr8GFkV3QN799Dj7Wj--r5-z17elltXzNVEFwzOqSa4O5JtqQBjNVM05qJutqYZCqapO6xoXhTaE0K1RZ8KRgJSdNcuhyUczB3ZQ7eLcfdYhim85I3wyCVIwWlNEKJRWdVMq7ELw2YvDpTH8QGIkjbHHkKI5MRYItsJhgJyOZjNYNf8n_mH4ACmqEeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576367650</pqid></control><display><type>article</type><title>Application of group analysis to the spatially homogeneous and isotropic Boltzmann equation with source using its Fourier image</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Grigoriev, Yurii N ; Meleshko, Sergey V ; Suriyawichitseranee, Amornrat</creator><creatorcontrib>Grigoriev, Yurii N ; Meleshko, Sergey V ; Suriyawichitseranee, Amornrat</creatorcontrib><description>Group analysis of the spatially homogeneous and molecular energy dependent Boltzmann equations with source term is carried out. The Fourier transform of the Boltzmann equation with respect to the molecular velocity variable is considered. The correspondent determining equation of the admitted Lie group is reduced to a partial differential equation for the admitted source. The latter equation is analyzed by an algebraic method. A complete group classification of the Fourier transform of the Boltzmann equation with respect to a source function is given. The representation of invariant solutions and corresponding reduced equations for all obtained source functions are also presented.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/621/1/012006</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Boltzmann transport equation ; Fourier transforms ; Lie groups ; Mathematical analysis ; Partial differential equations ; Physics</subject><ispartof>Journal of physics. Conference series, 2015-06, Vol.621 (1), p.12006</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-b48ef18e2ef2d17cb782b7ab59f0c5bf59fe13f8d3ce73c438b787482d2efe493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2576367650?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Grigoriev, Yurii N</creatorcontrib><creatorcontrib>Meleshko, Sergey V</creatorcontrib><creatorcontrib>Suriyawichitseranee, Amornrat</creatorcontrib><title>Application of group analysis to the spatially homogeneous and isotropic Boltzmann equation with source using its Fourier image</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Group analysis of the spatially homogeneous and molecular energy dependent Boltzmann equations with source term is carried out. The Fourier transform of the Boltzmann equation with respect to the molecular velocity variable is considered. The correspondent determining equation of the admitted Lie group is reduced to a partial differential equation for the admitted source. The latter equation is analyzed by an algebraic method. A complete group classification of the Fourier transform of the Boltzmann equation with respect to a source function is given. The representation of invariant solutions and corresponding reduced equations for all obtained source functions are also presented.</description><subject>Boltzmann transport equation</subject><subject>Fourier transforms</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Partial differential equations</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkMFPwyAUxonRxDn9FwyJ51qgLbDjXJyamHjRM6EUOpaudEBj5sV_XZaaefRd3svj-748fgDcYnSPEec5ZiXJaLWgOSU4xznCBCF6Bmanh_PTzPkluAphi1CRis3A93IYOqtktK6HzsDWu3GAspfdIdgAo4Nxo2EYkkB23QFu3M61utduDEnVQBtc9G6wCj64Ln7tZN9DvR-nvE8bNzC40SsNx2D7FtoY4DotrPbQ7mSrr8GFkV3QN799Dj7Wj--r5-z17elltXzNVEFwzOqSa4O5JtqQBjNVM05qJutqYZCqapO6xoXhTaE0K1RZ8KRgJSdNcuhyUczB3ZQ7eLcfdYhim85I3wyCVIwWlNEKJRWdVMq7ELw2YvDpTH8QGIkjbHHkKI5MRYItsJhgJyOZjNYNf8n_mH4ACmqEeA</recordid><startdate>20150611</startdate><enddate>20150611</enddate><creator>Grigoriev, Yurii N</creator><creator>Meleshko, Sergey V</creator><creator>Suriyawichitseranee, Amornrat</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20150611</creationdate><title>Application of group analysis to the spatially homogeneous and isotropic Boltzmann equation with source using its Fourier image</title><author>Grigoriev, Yurii N ; Meleshko, Sergey V ; Suriyawichitseranee, Amornrat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-b48ef18e2ef2d17cb782b7ab59f0c5bf59fe13f8d3ce73c438b787482d2efe493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boltzmann transport equation</topic><topic>Fourier transforms</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Partial differential equations</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigoriev, Yurii N</creatorcontrib><creatorcontrib>Meleshko, Sergey V</creatorcontrib><creatorcontrib>Suriyawichitseranee, Amornrat</creatorcontrib><collection>IOP Publishing (Open access)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigoriev, Yurii N</au><au>Meleshko, Sergey V</au><au>Suriyawichitseranee, Amornrat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of group analysis to the spatially homogeneous and isotropic Boltzmann equation with source using its Fourier image</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2015-06-11</date><risdate>2015</risdate><volume>621</volume><issue>1</issue><spage>12006</spage><pages>12006-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Group analysis of the spatially homogeneous and molecular energy dependent Boltzmann equations with source term is carried out. The Fourier transform of the Boltzmann equation with respect to the molecular velocity variable is considered. The correspondent determining equation of the admitted Lie group is reduced to a partial differential equation for the admitted source. The latter equation is analyzed by an algebraic method. A complete group classification of the Fourier transform of the Boltzmann equation with respect to a source function is given. The representation of invariant solutions and corresponding reduced equations for all obtained source functions are also presented.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/621/1/012006</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2015-06, Vol.621 (1), p.12006 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2576367650 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Boltzmann transport equation Fourier transforms Lie groups Mathematical analysis Partial differential equations Physics |
title | Application of group analysis to the spatially homogeneous and isotropic Boltzmann equation with source using its Fourier image |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A48%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20group%20analysis%20to%20the%20spatially%20homogeneous%20and%20isotropic%20Boltzmann%20equation%20with%20source%20using%20its%20Fourier%20image&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Grigoriev,%20Yurii%20N&rft.date=2015-06-11&rft.volume=621&rft.issue=1&rft.spage=12006&rft.pages=12006-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/621/1/012006&rft_dat=%3Cproquest_iop_j%3E2576367650%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-b48ef18e2ef2d17cb782b7ab59f0c5bf59fe13f8d3ce73c438b787482d2efe493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576367650&rft_id=info:pmid/&rfr_iscdi=true |