Loading…

The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model

In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2015-06, Vol.622 (1), p.12039
Main Authors: Anggriani, N, Supriatna, A K, Soewono, E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374t-61de2b3a63be01013ca768accfe5141d28ffc343200c01727778b23fbe7be5553
cites cdi_FETCH-LOGICAL-c374t-61de2b3a63be01013ca768accfe5141d28ffc343200c01727778b23fbe7be5553
container_end_page
container_issue 1
container_start_page 12039
container_title Journal of physics. Conference series
container_volume 622
creator Anggriani, N
Supriatna, A K
Soewono, E
description In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov function, we show that the disease- free equilibrium is globally asymptotic stable whenever BRN is less than one and when it is greater than one, the endemic equilibrium is globally asymptotic stable. Numerical result shows the dynamic of each compartment together with effect of multiple bio-agent intervention as a control to the dengue transmission.
doi_str_mv 10.1088/1742-6596/622/1/012039
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2576369014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576369014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-61de2b3a63be01013ca768accfe5141d28ffc343200c01727778b23fbe7be5553</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQJe1-ajTbrLsU0dTLxwgnchSU80o6Zb04L797ZU5qXn5hx4Pzg8CN1Sck9JUaRUZiwR-UykgrGUpoQywmdnaHISzk93UVyiqxh3hPB-5AS9bz8Br759bCFYwDqU-LXVxle-PeJ50NUx-ohrh9vBd-h6wTReYx_wEsJHB3jpI-gIeB0c2NbXAT_XJVTX6MLpKsLN756it4fVdvGUbF4e14v5JrFcZm0iaAnMcC24AUIJ5VZLUWhrHeQ0oyUrnLM844wQS6hkUsrCMO4MSAN5nvMpuht790196CC2ald3Tf94VCyXgosZoVnvEqPLNnWMDTi1b_yXbo6KEjVQVAMgNcBSPUVF1UixD7Ix6Ov9X_M_oR-MUXMT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576369014</pqid></control><display><type>article</type><title>The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Anggriani, N ; Supriatna, A K ; Soewono, E</creator><creatorcontrib>Anggriani, N ; Supriatna, A K ; Soewono, E</creatorcontrib><description>In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov function, we show that the disease- free equilibrium is globally asymptotic stable whenever BRN is less than one and when it is greater than one, the endemic equilibrium is globally asymptotic stable. Numerical result shows the dynamic of each compartment together with effect of multiple bio-agent intervention as a control to the dengue transmission.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/622/1/012039</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Asymptotic properties ; Dengue fever ; Equilibrium ; Liapunov functions ; Physics ; Stability analysis ; Viral diseases</subject><ispartof>Journal of physics. Conference series, 2015-06, Vol.622 (1), p.12039</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-61de2b3a63be01013ca768accfe5141d28ffc343200c01727778b23fbe7be5553</citedby><cites>FETCH-LOGICAL-c374t-61de2b3a63be01013ca768accfe5141d28ffc343200c01727778b23fbe7be5553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2576369014?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Anggriani, N</creatorcontrib><creatorcontrib>Supriatna, A K</creatorcontrib><creatorcontrib>Soewono, E</creatorcontrib><title>The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov function, we show that the disease- free equilibrium is globally asymptotic stable whenever BRN is less than one and when it is greater than one, the endemic equilibrium is globally asymptotic stable. Numerical result shows the dynamic of each compartment together with effect of multiple bio-agent intervention as a control to the dengue transmission.</description><subject>Asymptotic properties</subject><subject>Dengue fever</subject><subject>Equilibrium</subject><subject>Liapunov functions</subject><subject>Physics</subject><subject>Stability analysis</subject><subject>Viral diseases</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQJe1-ajTbrLsU0dTLxwgnchSU80o6Zb04L797ZU5qXn5hx4Pzg8CN1Sck9JUaRUZiwR-UykgrGUpoQywmdnaHISzk93UVyiqxh3hPB-5AS9bz8Br759bCFYwDqU-LXVxle-PeJ50NUx-ohrh9vBd-h6wTReYx_wEsJHB3jpI-gIeB0c2NbXAT_XJVTX6MLpKsLN756it4fVdvGUbF4e14v5JrFcZm0iaAnMcC24AUIJ5VZLUWhrHeQ0oyUrnLM844wQS6hkUsrCMO4MSAN5nvMpuht790196CC2ald3Tf94VCyXgosZoVnvEqPLNnWMDTi1b_yXbo6KEjVQVAMgNcBSPUVF1UixD7Ix6Ov9X_M_oR-MUXMT</recordid><startdate>20150622</startdate><enddate>20150622</enddate><creator>Anggriani, N</creator><creator>Supriatna, A K</creator><creator>Soewono, E</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20150622</creationdate><title>The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model</title><author>Anggriani, N ; Supriatna, A K ; Soewono, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-61de2b3a63be01013ca768accfe5141d28ffc343200c01727778b23fbe7be5553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Asymptotic properties</topic><topic>Dengue fever</topic><topic>Equilibrium</topic><topic>Liapunov functions</topic><topic>Physics</topic><topic>Stability analysis</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anggriani, N</creatorcontrib><creatorcontrib>Supriatna, A K</creatorcontrib><creatorcontrib>Soewono, E</creatorcontrib><collection>IOP_英国物理学会OA刊</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anggriani, N</au><au>Supriatna, A K</au><au>Soewono, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2015-06-22</date><risdate>2015</risdate><volume>622</volume><issue>1</issue><spage>12039</spage><pages>12039-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov function, we show that the disease- free equilibrium is globally asymptotic stable whenever BRN is less than one and when it is greater than one, the endemic equilibrium is globally asymptotic stable. Numerical result shows the dynamic of each compartment together with effect of multiple bio-agent intervention as a control to the dengue transmission.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/622/1/012039</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2015-06, Vol.622 (1), p.12039
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2576369014
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Asymptotic properties
Dengue fever
Equilibrium
Liapunov functions
Physics
Stability analysis
Viral diseases
title The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Existence%20and%20Stability%20Analysis%20of%20the%20Equilibria%20in%20Dengue%20Disease%20Infection%20Model&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Anggriani,%20N&rft.date=2015-06-22&rft.volume=622&rft.issue=1&rft.spage=12039&rft.pages=12039-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/622/1/012039&rft_dat=%3Cproquest_cross%3E2576369014%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-61de2b3a63be01013ca768accfe5141d28ffc343200c01727778b23fbe7be5553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576369014&rft_id=info:pmid/&rfr_iscdi=true