Loading…
The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model
In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By c...
Saved in:
Published in: | Journal of physics. Conference series 2015-06, Vol.622 (1), p.12039 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c374t-61de2b3a63be01013ca768accfe5141d28ffc343200c01727778b23fbe7be5553 |
---|---|
cites | cdi_FETCH-LOGICAL-c374t-61de2b3a63be01013ca768accfe5141d28ffc343200c01727778b23fbe7be5553 |
container_end_page | |
container_issue | 1 |
container_start_page | 12039 |
container_title | Journal of physics. Conference series |
container_volume | 622 |
creator | Anggriani, N Supriatna, A K Soewono, E |
description | In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov function, we show that the disease- free equilibrium is globally asymptotic stable whenever BRN is less than one and when it is greater than one, the endemic equilibrium is globally asymptotic stable. Numerical result shows the dynamic of each compartment together with effect of multiple bio-agent intervention as a control to the dengue transmission. |
doi_str_mv | 10.1088/1742-6596/622/1/012039 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2576369014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576369014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-61de2b3a63be01013ca768accfe5141d28ffc343200c01727778b23fbe7be5553</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQJe1-ajTbrLsU0dTLxwgnchSU80o6Zb04L797ZU5qXn5hx4Pzg8CN1Sck9JUaRUZiwR-UykgrGUpoQywmdnaHISzk93UVyiqxh3hPB-5AS9bz8Br759bCFYwDqU-LXVxle-PeJ50NUx-ohrh9vBd-h6wTReYx_wEsJHB3jpI-gIeB0c2NbXAT_XJVTX6MLpKsLN756it4fVdvGUbF4e14v5JrFcZm0iaAnMcC24AUIJ5VZLUWhrHeQ0oyUrnLM844wQS6hkUsrCMO4MSAN5nvMpuht790196CC2ald3Tf94VCyXgosZoVnvEqPLNnWMDTi1b_yXbo6KEjVQVAMgNcBSPUVF1UixD7Ix6Ov9X_M_oR-MUXMT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576369014</pqid></control><display><type>article</type><title>The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Anggriani, N ; Supriatna, A K ; Soewono, E</creator><creatorcontrib>Anggriani, N ; Supriatna, A K ; Soewono, E</creatorcontrib><description>In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov function, we show that the disease- free equilibrium is globally asymptotic stable whenever BRN is less than one and when it is greater than one, the endemic equilibrium is globally asymptotic stable. Numerical result shows the dynamic of each compartment together with effect of multiple bio-agent intervention as a control to the dengue transmission.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/622/1/012039</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Asymptotic properties ; Dengue fever ; Equilibrium ; Liapunov functions ; Physics ; Stability analysis ; Viral diseases</subject><ispartof>Journal of physics. Conference series, 2015-06, Vol.622 (1), p.12039</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-61de2b3a63be01013ca768accfe5141d28ffc343200c01727778b23fbe7be5553</citedby><cites>FETCH-LOGICAL-c374t-61de2b3a63be01013ca768accfe5141d28ffc343200c01727778b23fbe7be5553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2576369014?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Anggriani, N</creatorcontrib><creatorcontrib>Supriatna, A K</creatorcontrib><creatorcontrib>Soewono, E</creatorcontrib><title>The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov function, we show that the disease- free equilibrium is globally asymptotic stable whenever BRN is less than one and when it is greater than one, the endemic equilibrium is globally asymptotic stable. Numerical result shows the dynamic of each compartment together with effect of multiple bio-agent intervention as a control to the dengue transmission.</description><subject>Asymptotic properties</subject><subject>Dengue fever</subject><subject>Equilibrium</subject><subject>Liapunov functions</subject><subject>Physics</subject><subject>Stability analysis</subject><subject>Viral diseases</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQJe1-ajTbrLsU0dTLxwgnchSU80o6Zb04L797ZU5qXn5hx4Pzg8CN1Sck9JUaRUZiwR-UykgrGUpoQywmdnaHISzk93UVyiqxh3hPB-5AS9bz8Br759bCFYwDqU-LXVxle-PeJ50NUx-ohrh9vBd-h6wTReYx_wEsJHB3jpI-gIeB0c2NbXAT_XJVTX6MLpKsLN756it4fVdvGUbF4e14v5JrFcZm0iaAnMcC24AUIJ5VZLUWhrHeQ0oyUrnLM844wQS6hkUsrCMO4MSAN5nvMpuht790196CC2ald3Tf94VCyXgosZoVnvEqPLNnWMDTi1b_yXbo6KEjVQVAMgNcBSPUVF1UixD7Ix6Ov9X_M_oR-MUXMT</recordid><startdate>20150622</startdate><enddate>20150622</enddate><creator>Anggriani, N</creator><creator>Supriatna, A K</creator><creator>Soewono, E</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20150622</creationdate><title>The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model</title><author>Anggriani, N ; Supriatna, A K ; Soewono, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-61de2b3a63be01013ca768accfe5141d28ffc343200c01727778b23fbe7be5553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Asymptotic properties</topic><topic>Dengue fever</topic><topic>Equilibrium</topic><topic>Liapunov functions</topic><topic>Physics</topic><topic>Stability analysis</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anggriani, N</creatorcontrib><creatorcontrib>Supriatna, A K</creatorcontrib><creatorcontrib>Soewono, E</creatorcontrib><collection>IOP_英国物理学会OA刊</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anggriani, N</au><au>Supriatna, A K</au><au>Soewono, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2015-06-22</date><risdate>2015</risdate><volume>622</volume><issue>1</issue><spage>12039</spage><pages>12039-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov function, we show that the disease- free equilibrium is globally asymptotic stable whenever BRN is less than one and when it is greater than one, the endemic equilibrium is globally asymptotic stable. Numerical result shows the dynamic of each compartment together with effect of multiple bio-agent intervention as a control to the dengue transmission.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/622/1/012039</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2015-06, Vol.622 (1), p.12039 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2576369014 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Asymptotic properties Dengue fever Equilibrium Liapunov functions Physics Stability analysis Viral diseases |
title | The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Existence%20and%20Stability%20Analysis%20of%20the%20Equilibria%20in%20Dengue%20Disease%20Infection%20Model&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Anggriani,%20N&rft.date=2015-06-22&rft.volume=622&rft.issue=1&rft.spage=12039&rft.pages=12039-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/622/1/012039&rft_dat=%3Cproquest_cross%3E2576369014%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-61de2b3a63be01013ca768accfe5141d28ffc343200c01727778b23fbe7be5553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576369014&rft_id=info:pmid/&rfr_iscdi=true |