Loading…
A New Blind Video Quality Metric for Assessing Different Turbulence Mitigation Algorithms
Although many algorithms have been proposed to mitigate air turbulence in optical videos, there do not seem to be consistent blind video quality assessment metrics that can reliably assess different approaches. Blind video quality assessment metrics are necessary because many videos containing air t...
Saved in:
Published in: | Electronics (Basel) 2021-09, Vol.10 (18), p.2277 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c252t-d52ab1ac676f53b65a1c313f6ab6020fbf8d5f97f2d810d803348603e733377e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c252t-d52ab1ac676f53b65a1c313f6ab6020fbf8d5f97f2d810d803348603e733377e3 |
container_end_page | |
container_issue | 18 |
container_start_page | 2277 |
container_title | Electronics (Basel) |
container_volume | 10 |
creator | Kwan, Chiman Budavari, Bence |
description | Although many algorithms have been proposed to mitigate air turbulence in optical videos, there do not seem to be consistent blind video quality assessment metrics that can reliably assess different approaches. Blind video quality assessment metrics are necessary because many videos containing air turbulence do not have ground truth. In this paper, a simple and intuitive blind video quality assessment metric is proposed. This metric can reliably and consistently assess various turbulent mitigation algorithms for optical videos. Experimental results using more than 10 videos in the literature show that the proposed metrics correlate well with human subjective evaluations. Compared with an existing blind video metric and two other blind image quality metrics, the proposed metrics performed consistently better. |
doi_str_mv | 10.3390/electronics10182277 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2576383326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576383326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-d52ab1ac676f53b65a1c313f6ab6020fbf8d5f97f2d810d803348603e733377e3</originalsourceid><addsrcrecordid>eNptUM1KxDAYDKLgovsEXgKeq0k-m7THuv7CriKsgqeSpl_WLN1mTVJk397KevDgXGYOwwwzhJxxdgFQskvs0KTge2ciZ7wQQqkDMhFMlVkpSnH4Rx-TaYxrNqLkUACbkPeKPuEXve5c39I316KnL4PuXNrRBabgDLU-0CpGjNH1K3rjrMWAfaLLITRDh71BunDJrXRyvqdVt_LBpY9NPCVHVncRp798Ql7vbpezh2z-fP84q-aZEblIWZsL3XBtpJI2h0bmmhvgYKVuJBPMNrZoc1sqK9qCs7ZgAFeFZIAKAJRCOCHn-9xt8J8DxlSv_RD6sbIWuZLjTBBydMHeZYKPMaCtt8FtdNjVnNU_N9b_3Ajfz1Vofg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576383326</pqid></control><display><type>article</type><title>A New Blind Video Quality Metric for Assessing Different Turbulence Mitigation Algorithms</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Kwan, Chiman ; Budavari, Bence</creator><creatorcontrib>Kwan, Chiman ; Budavari, Bence</creatorcontrib><description>Although many algorithms have been proposed to mitigate air turbulence in optical videos, there do not seem to be consistent blind video quality assessment metrics that can reliably assess different approaches. Blind video quality assessment metrics are necessary because many videos containing air turbulence do not have ground truth. In this paper, a simple and intuitive blind video quality assessment metric is proposed. This metric can reliably and consistently assess various turbulent mitigation algorithms for optical videos. Experimental results using more than 10 videos in the literature show that the proposed metrics correlate well with human subjective evaluations. Compared with an existing blind video metric and two other blind image quality metrics, the proposed metrics performed consistently better.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10182277</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Deep learning ; Image quality ; Quality assessment ; Registration ; Turbulence ; Video</subject><ispartof>Electronics (Basel), 2021-09, Vol.10 (18), p.2277</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-d52ab1ac676f53b65a1c313f6ab6020fbf8d5f97f2d810d803348603e733377e3</citedby><cites>FETCH-LOGICAL-c252t-d52ab1ac676f53b65a1c313f6ab6020fbf8d5f97f2d810d803348603e733377e3</cites><orcidid>0000-0002-4341-0769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576383326/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576383326?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Kwan, Chiman</creatorcontrib><creatorcontrib>Budavari, Bence</creatorcontrib><title>A New Blind Video Quality Metric for Assessing Different Turbulence Mitigation Algorithms</title><title>Electronics (Basel)</title><description>Although many algorithms have been proposed to mitigate air turbulence in optical videos, there do not seem to be consistent blind video quality assessment metrics that can reliably assess different approaches. Blind video quality assessment metrics are necessary because many videos containing air turbulence do not have ground truth. In this paper, a simple and intuitive blind video quality assessment metric is proposed. This metric can reliably and consistently assess various turbulent mitigation algorithms for optical videos. Experimental results using more than 10 videos in the literature show that the proposed metrics correlate well with human subjective evaluations. Compared with an existing blind video metric and two other blind image quality metrics, the proposed metrics performed consistently better.</description><subject>Algorithms</subject><subject>Deep learning</subject><subject>Image quality</subject><subject>Quality assessment</subject><subject>Registration</subject><subject>Turbulence</subject><subject>Video</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUM1KxDAYDKLgovsEXgKeq0k-m7THuv7CriKsgqeSpl_WLN1mTVJk397KevDgXGYOwwwzhJxxdgFQskvs0KTge2ciZ7wQQqkDMhFMlVkpSnH4Rx-TaYxrNqLkUACbkPeKPuEXve5c39I316KnL4PuXNrRBabgDLU-0CpGjNH1K3rjrMWAfaLLITRDh71BunDJrXRyvqdVt_LBpY9NPCVHVncRp798Ql7vbpezh2z-fP84q-aZEblIWZsL3XBtpJI2h0bmmhvgYKVuJBPMNrZoc1sqK9qCs7ZgAFeFZIAKAJRCOCHn-9xt8J8DxlSv_RD6sbIWuZLjTBBydMHeZYKPMaCtt8FtdNjVnNU_N9b_3Ajfz1Vofg</recordid><startdate>20210916</startdate><enddate>20210916</enddate><creator>Kwan, Chiman</creator><creator>Budavari, Bence</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4341-0769</orcidid></search><sort><creationdate>20210916</creationdate><title>A New Blind Video Quality Metric for Assessing Different Turbulence Mitigation Algorithms</title><author>Kwan, Chiman ; Budavari, Bence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-d52ab1ac676f53b65a1c313f6ab6020fbf8d5f97f2d810d803348603e733377e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Deep learning</topic><topic>Image quality</topic><topic>Quality assessment</topic><topic>Registration</topic><topic>Turbulence</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwan, Chiman</creatorcontrib><creatorcontrib>Budavari, Bence</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwan, Chiman</au><au>Budavari, Bence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Blind Video Quality Metric for Assessing Different Turbulence Mitigation Algorithms</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-09-16</date><risdate>2021</risdate><volume>10</volume><issue>18</issue><spage>2277</spage><pages>2277-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Although many algorithms have been proposed to mitigate air turbulence in optical videos, there do not seem to be consistent blind video quality assessment metrics that can reliably assess different approaches. Blind video quality assessment metrics are necessary because many videos containing air turbulence do not have ground truth. In this paper, a simple and intuitive blind video quality assessment metric is proposed. This metric can reliably and consistently assess various turbulent mitigation algorithms for optical videos. Experimental results using more than 10 videos in the literature show that the proposed metrics correlate well with human subjective evaluations. Compared with an existing blind video metric and two other blind image quality metrics, the proposed metrics performed consistently better.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10182277</doi><orcidid>https://orcid.org/0000-0002-4341-0769</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2021-09, Vol.10 (18), p.2277 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2576383326 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Deep learning Image quality Quality assessment Registration Turbulence Video |
title | A New Blind Video Quality Metric for Assessing Different Turbulence Mitigation Algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Blind%20Video%20Quality%20Metric%20for%20Assessing%20Different%20Turbulence%20Mitigation%20Algorithms&rft.jtitle=Electronics%20(Basel)&rft.au=Kwan,%20Chiman&rft.date=2021-09-16&rft.volume=10&rft.issue=18&rft.spage=2277&rft.pages=2277-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10182277&rft_dat=%3Cproquest_cross%3E2576383326%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-d52ab1ac676f53b65a1c313f6ab6020fbf8d5f97f2d810d803348603e733377e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576383326&rft_id=info:pmid/&rfr_iscdi=true |