Loading…
Test Scenario Generation for Context-Oriented Programs
Their highly adaptive nature and the combinatorial explosion of possible configurations makes testing context-oriented programs hard. We propose a methodology to automate the generation of test scenarios for developers of feature-based context-oriented programs. By using combinatorial interaction te...
Saved in:
Published in: | arXiv.org 2021-09 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Martou, Pierre Mens, Kim Duhoux, Benoît Legay, Axel |
description | Their highly adaptive nature and the combinatorial explosion of possible configurations makes testing context-oriented programs hard. We propose a methodology to automate the generation of test scenarios for developers of feature-based context-oriented programs. By using combinatorial interaction testing we generate a covering array from which a small but representative set of test scenarios can be inferred. By taking advantage of the explicit separation of contexts and features in such context-oriented programs, we can further rearrange the generated test scenarios to minimise the reconfiguration cost between subsequent scenarios. Finally, we explore how a previously generated test suite can be adapted incrementally when the system evolves to a new version. By validating these algorithms on a small use case, our initial results show that the proposed test generation approach is efficient and beneficial to developers to test and improve the design of context-oriented programs. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2576741856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576741856</sourcerecordid><originalsourceid>FETCH-proquest_journals_25767418563</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwC0ktLlEITk7NSyzKzFdwT81LLUosyczPU0jLL1Jwzs8rSa0o0fUvykwFslIUAory04sSc4t5GFjTEnOKU3mhNDeDsptriLOHbkFRfmEp0Mj4rPzSojygVLyRqbmZuYmhhamZMXGqANMeNX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576741856</pqid></control><display><type>article</type><title>Test Scenario Generation for Context-Oriented Programs</title><source>Publicly Available Content Database</source><creator>Martou, Pierre ; Mens, Kim ; Duhoux, Benoît ; Legay, Axel</creator><creatorcontrib>Martou, Pierre ; Mens, Kim ; Duhoux, Benoît ; Legay, Axel</creatorcontrib><description>Their highly adaptive nature and the combinatorial explosion of possible configurations makes testing context-oriented programs hard. We propose a methodology to automate the generation of test scenarios for developers of feature-based context-oriented programs. By using combinatorial interaction testing we generate a covering array from which a small but representative set of test scenarios can be inferred. By taking advantage of the explicit separation of contexts and features in such context-oriented programs, we can further rearrange the generated test scenarios to minimise the reconfiguration cost between subsequent scenarios. Finally, we explore how a previously generated test suite can be adapted incrementally when the system evolves to a new version. By validating these algorithms on a small use case, our initial results show that the proposed test generation approach is efficient and beneficial to developers to test and improve the design of context-oriented programs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Combinatorial analysis ; Context ; Reconfiguration ; Scenario generation</subject><ispartof>arXiv.org, 2021-09</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2576741856?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Martou, Pierre</creatorcontrib><creatorcontrib>Mens, Kim</creatorcontrib><creatorcontrib>Duhoux, Benoît</creatorcontrib><creatorcontrib>Legay, Axel</creatorcontrib><title>Test Scenario Generation for Context-Oriented Programs</title><title>arXiv.org</title><description>Their highly adaptive nature and the combinatorial explosion of possible configurations makes testing context-oriented programs hard. We propose a methodology to automate the generation of test scenarios for developers of feature-based context-oriented programs. By using combinatorial interaction testing we generate a covering array from which a small but representative set of test scenarios can be inferred. By taking advantage of the explicit separation of contexts and features in such context-oriented programs, we can further rearrange the generated test scenarios to minimise the reconfiguration cost between subsequent scenarios. Finally, we explore how a previously generated test suite can be adapted incrementally when the system evolves to a new version. By validating these algorithms on a small use case, our initial results show that the proposed test generation approach is efficient and beneficial to developers to test and improve the design of context-oriented programs.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Context</subject><subject>Reconfiguration</subject><subject>Scenario generation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwC0ktLlEITk7NSyzKzFdwT81LLUosyczPU0jLL1Jwzs8rSa0o0fUvykwFslIUAory04sSc4t5GFjTEnOKU3mhNDeDsptriLOHbkFRfmEp0Mj4rPzSojygVLyRqbmZuYmhhamZMXGqANMeNX8</recordid><startdate>20210924</startdate><enddate>20210924</enddate><creator>Martou, Pierre</creator><creator>Mens, Kim</creator><creator>Duhoux, Benoît</creator><creator>Legay, Axel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210924</creationdate><title>Test Scenario Generation for Context-Oriented Programs</title><author>Martou, Pierre ; Mens, Kim ; Duhoux, Benoît ; Legay, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25767418563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Context</topic><topic>Reconfiguration</topic><topic>Scenario generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Martou, Pierre</creatorcontrib><creatorcontrib>Mens, Kim</creatorcontrib><creatorcontrib>Duhoux, Benoît</creatorcontrib><creatorcontrib>Legay, Axel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martou, Pierre</au><au>Mens, Kim</au><au>Duhoux, Benoît</au><au>Legay, Axel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Test Scenario Generation for Context-Oriented Programs</atitle><jtitle>arXiv.org</jtitle><date>2021-09-24</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Their highly adaptive nature and the combinatorial explosion of possible configurations makes testing context-oriented programs hard. We propose a methodology to automate the generation of test scenarios for developers of feature-based context-oriented programs. By using combinatorial interaction testing we generate a covering array from which a small but representative set of test scenarios can be inferred. By taking advantage of the explicit separation of contexts and features in such context-oriented programs, we can further rearrange the generated test scenarios to minimise the reconfiguration cost between subsequent scenarios. Finally, we explore how a previously generated test suite can be adapted incrementally when the system evolves to a new version. By validating these algorithms on a small use case, our initial results show that the proposed test generation approach is efficient and beneficial to developers to test and improve the design of context-oriented programs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2576741856 |
source | Publicly Available Content Database |
subjects | Algorithms Combinatorial analysis Context Reconfiguration Scenario generation |
title | Test Scenario Generation for Context-Oriented Programs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Test%20Scenario%20Generation%20for%20Context-Oriented%20Programs&rft.jtitle=arXiv.org&rft.au=Martou,%20Pierre&rft.date=2021-09-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2576741856%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25767418563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576741856&rft_id=info:pmid/&rfr_iscdi=true |