Loading…

On the Role of Solar Wind Expansion as a Source of Whistler Waves: Scattering of Suprathermal Electrons and Heat Flux Regulation in the Inner Heliosphere

The role of solar wind expansion in generating whistler waves is investigated using the EB-iPic3D code, which models solar wind expansion self-consistently within a fully kinetic semi-implicit approach. The simulation is initialized with an electron velocity distribution function modeled after obser...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2021-09, Vol.919 (1), p.42
Main Authors: Micera, A., Zhukov, A. N., López, R. A., Boella, E., Tenerani, A., Velli, M., Lapenta, G., Innocenti, M. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-c3e70128f8737d7b7511e4381775cf0eee715c5dc742a6c5d5bae88b36bc6fc83
cites cdi_FETCH-LOGICAL-c379t-c3e70128f8737d7b7511e4381775cf0eee715c5dc742a6c5d5bae88b36bc6fc83
container_end_page
container_issue 1
container_start_page 42
container_title The Astrophysical journal
container_volume 919
creator Micera, A.
Zhukov, A. N.
López, R. A.
Boella, E.
Tenerani, A.
Velli, M.
Lapenta, G.
Innocenti, M. E.
description The role of solar wind expansion in generating whistler waves is investigated using the EB-iPic3D code, which models solar wind expansion self-consistently within a fully kinetic semi-implicit approach. The simulation is initialized with an electron velocity distribution function modeled after observations of the Parker Solar Probe during its first perihelion at 0.166 au, consisting of a dense core and an antisunward strahl. This distribution function is initially stable with respect to kinetic instabilities. Expansion drives the solar wind into successive regimes where whistler heat flux instabilities are triggered. These instabilities produce sunward whistler waves initially characterized by predominantly oblique propagation with respect to the interplanetary magnetic field. The excited waves interact with the electrons via resonant scattering processes. As a consequence, the strahl pitch angle distribution broadens and its drift velocity reduces. The strahl electrons are scattered in the direction perpendicular to the magnetic field, and an electron halo is formed. At a later stage, resonant electron firehose instability is triggered and further affects the electron temperature anisotropy as the solar wind expands. Wave–particle interaction processes are accompanied by a substantial reduction of the solar wind heat flux. The simulated whistler waves are in qualitative agreement with observations in terms of wave frequencies, amplitudes, and propagation angles. Our work proposes an explanation for the observations of oblique and parallel whistler waves in the solar wind. We conclude that solar wind expansion has to be factored in when trying to explain kinetic processes at different heliocentric distances.
doi_str_mv 10.3847/1538-4357/ac1067
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2577066781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577066781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-c3e70128f8737d7b7511e4381775cf0eee715c5dc742a6c5d5bae88b36bc6fc83</originalsourceid><addsrcrecordid>eNp1kUFP5CAUgIlxE0fXu0cSPToKpe2j3owZd0xMTHQ3eiMM86qdIFSgG_en7L-VWqOX3Qvw4Hsf8B4hB5ydCFnCKa-EnJeiglNtOKthi8w-t7bJjDFWzmsBDztkN8bNGBZNMyN_bxxNT0hvvUXqW3rnrQ70vnNrunjttYudd1RHqvPJEMw7c__UxWQxY_o3xjN6Z3RKGDr3-G4Y-qCzMjxrSxcWTQreZUE2LlEnemmHV3qLj4PVaZR30wOunMvGJdrOxz5n43fyrdU24v7HvEd-XS5-Xizn1zc_ri7Or-dGQJPyiMB4IVsJAtawgopzLIXkAJVpGSICr0y1NlAWus6LaqVRypWoV6ZujRR75HDy9sG_DBiT2uSfunylKioAVtcgeabYRJngYwzYqj50zzr8UZypsQFqrLYaq62mBuSUoyml8_2XU_cb1fBGcVUWql-3GTv-B_Zf6xtK9ZR_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577066781</pqid></control><display><type>article</type><title>On the Role of Solar Wind Expansion as a Source of Whistler Waves: Scattering of Suprathermal Electrons and Heat Flux Regulation in the Inner Heliosphere</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Micera, A. ; Zhukov, A. N. ; López, R. A. ; Boella, E. ; Tenerani, A. ; Velli, M. ; Lapenta, G. ; Innocenti, M. E.</creator><creatorcontrib>Micera, A. ; Zhukov, A. N. ; López, R. A. ; Boella, E. ; Tenerani, A. ; Velli, M. ; Lapenta, G. ; Innocenti, M. E.</creatorcontrib><description>The role of solar wind expansion in generating whistler waves is investigated using the EB-iPic3D code, which models solar wind expansion self-consistently within a fully kinetic semi-implicit approach. The simulation is initialized with an electron velocity distribution function modeled after observations of the Parker Solar Probe during its first perihelion at 0.166 au, consisting of a dense core and an antisunward strahl. This distribution function is initially stable with respect to kinetic instabilities. Expansion drives the solar wind into successive regimes where whistler heat flux instabilities are triggered. These instabilities produce sunward whistler waves initially characterized by predominantly oblique propagation with respect to the interplanetary magnetic field. The excited waves interact with the electrons via resonant scattering processes. As a consequence, the strahl pitch angle distribution broadens and its drift velocity reduces. The strahl electrons are scattered in the direction perpendicular to the magnetic field, and an electron halo is formed. At a later stage, resonant electron firehose instability is triggered and further affects the electron temperature anisotropy as the solar wind expands. Wave–particle interaction processes are accompanied by a substantial reduction of the solar wind heat flux. The simulated whistler waves are in qualitative agreement with observations in terms of wave frequencies, amplitudes, and propagation angles. Our work proposes an explanation for the observations of oblique and parallel whistler waves in the solar wind. We conclude that solar wind expansion has to be factored in when trying to explain kinetic processes at different heliocentric distances.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac1067</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Anisotropy ; Astrophysics ; Charged particles ; Distribution functions ; Electron drift velocity ; Electron energy ; Electron velocity distribution ; Expansion ; Fluctuations ; Heat flux ; Heat transfer ; Heliosphere ; Interplanetary magnetic field ; Magnetic fields ; Particle interactions ; Perihelions ; Pitch (inclination) ; Plasma astrophysics ; Qualitative analysis ; Scattering ; Solar probes ; Solar wind ; Space plasmas ; Velocity ; Velocity distribution ; Wave propagation ; Whistler waves ; Whistlers</subject><ispartof>The Astrophysical journal, 2021-09, Vol.919 (1), p.42</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Sep 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-c3e70128f8737d7b7511e4381775cf0eee715c5dc742a6c5d5bae88b36bc6fc83</citedby><cites>FETCH-LOGICAL-c379t-c3e70128f8737d7b7511e4381775cf0eee715c5dc742a6c5d5bae88b36bc6fc83</cites><orcidid>0000-0003-1970-6794 ; 0000-0002-2381-3106 ; 0000-0003-3223-1498 ; 0000-0003-2880-6084 ; 0000-0001-9293-174X ; 0000-0002-3123-4024 ; 0000-0002-5782-0013 ; 0000-0002-2542-9810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Micera, A.</creatorcontrib><creatorcontrib>Zhukov, A. N.</creatorcontrib><creatorcontrib>López, R. A.</creatorcontrib><creatorcontrib>Boella, E.</creatorcontrib><creatorcontrib>Tenerani, A.</creatorcontrib><creatorcontrib>Velli, M.</creatorcontrib><creatorcontrib>Lapenta, G.</creatorcontrib><creatorcontrib>Innocenti, M. E.</creatorcontrib><title>On the Role of Solar Wind Expansion as a Source of Whistler Waves: Scattering of Suprathermal Electrons and Heat Flux Regulation in the Inner Heliosphere</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The role of solar wind expansion in generating whistler waves is investigated using the EB-iPic3D code, which models solar wind expansion self-consistently within a fully kinetic semi-implicit approach. The simulation is initialized with an electron velocity distribution function modeled after observations of the Parker Solar Probe during its first perihelion at 0.166 au, consisting of a dense core and an antisunward strahl. This distribution function is initially stable with respect to kinetic instabilities. Expansion drives the solar wind into successive regimes where whistler heat flux instabilities are triggered. These instabilities produce sunward whistler waves initially characterized by predominantly oblique propagation with respect to the interplanetary magnetic field. The excited waves interact with the electrons via resonant scattering processes. As a consequence, the strahl pitch angle distribution broadens and its drift velocity reduces. The strahl electrons are scattered in the direction perpendicular to the magnetic field, and an electron halo is formed. At a later stage, resonant electron firehose instability is triggered and further affects the electron temperature anisotropy as the solar wind expands. Wave–particle interaction processes are accompanied by a substantial reduction of the solar wind heat flux. The simulated whistler waves are in qualitative agreement with observations in terms of wave frequencies, amplitudes, and propagation angles. Our work proposes an explanation for the observations of oblique and parallel whistler waves in the solar wind. We conclude that solar wind expansion has to be factored in when trying to explain kinetic processes at different heliocentric distances.</description><subject>Anisotropy</subject><subject>Astrophysics</subject><subject>Charged particles</subject><subject>Distribution functions</subject><subject>Electron drift velocity</subject><subject>Electron energy</subject><subject>Electron velocity distribution</subject><subject>Expansion</subject><subject>Fluctuations</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heliosphere</subject><subject>Interplanetary magnetic field</subject><subject>Magnetic fields</subject><subject>Particle interactions</subject><subject>Perihelions</subject><subject>Pitch (inclination)</subject><subject>Plasma astrophysics</subject><subject>Qualitative analysis</subject><subject>Scattering</subject><subject>Solar probes</subject><subject>Solar wind</subject><subject>Space plasmas</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Wave propagation</subject><subject>Whistler waves</subject><subject>Whistlers</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kUFP5CAUgIlxE0fXu0cSPToKpe2j3owZd0xMTHQ3eiMM86qdIFSgG_en7L-VWqOX3Qvw4Hsf8B4hB5ydCFnCKa-EnJeiglNtOKthi8w-t7bJjDFWzmsBDztkN8bNGBZNMyN_bxxNT0hvvUXqW3rnrQ70vnNrunjttYudd1RHqvPJEMw7c__UxWQxY_o3xjN6Z3RKGDr3-G4Y-qCzMjxrSxcWTQreZUE2LlEnemmHV3qLj4PVaZR30wOunMvGJdrOxz5n43fyrdU24v7HvEd-XS5-Xizn1zc_ri7Or-dGQJPyiMB4IVsJAtawgopzLIXkAJVpGSICr0y1NlAWus6LaqVRypWoV6ZujRR75HDy9sG_DBiT2uSfunylKioAVtcgeabYRJngYwzYqj50zzr8UZypsQFqrLYaq62mBuSUoyml8_2XU_cb1fBGcVUWql-3GTv-B_Zf6xtK9ZR_</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Micera, A.</creator><creator>Zhukov, A. N.</creator><creator>López, R. A.</creator><creator>Boella, E.</creator><creator>Tenerani, A.</creator><creator>Velli, M.</creator><creator>Lapenta, G.</creator><creator>Innocenti, M. E.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1970-6794</orcidid><orcidid>https://orcid.org/0000-0002-2381-3106</orcidid><orcidid>https://orcid.org/0000-0003-3223-1498</orcidid><orcidid>https://orcid.org/0000-0003-2880-6084</orcidid><orcidid>https://orcid.org/0000-0001-9293-174X</orcidid><orcidid>https://orcid.org/0000-0002-3123-4024</orcidid><orcidid>https://orcid.org/0000-0002-5782-0013</orcidid><orcidid>https://orcid.org/0000-0002-2542-9810</orcidid></search><sort><creationdate>20210901</creationdate><title>On the Role of Solar Wind Expansion as a Source of Whistler Waves: Scattering of Suprathermal Electrons and Heat Flux Regulation in the Inner Heliosphere</title><author>Micera, A. ; Zhukov, A. N. ; López, R. A. ; Boella, E. ; Tenerani, A. ; Velli, M. ; Lapenta, G. ; Innocenti, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-c3e70128f8737d7b7511e4381775cf0eee715c5dc742a6c5d5bae88b36bc6fc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Astrophysics</topic><topic>Charged particles</topic><topic>Distribution functions</topic><topic>Electron drift velocity</topic><topic>Electron energy</topic><topic>Electron velocity distribution</topic><topic>Expansion</topic><topic>Fluctuations</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heliosphere</topic><topic>Interplanetary magnetic field</topic><topic>Magnetic fields</topic><topic>Particle interactions</topic><topic>Perihelions</topic><topic>Pitch (inclination)</topic><topic>Plasma astrophysics</topic><topic>Qualitative analysis</topic><topic>Scattering</topic><topic>Solar probes</topic><topic>Solar wind</topic><topic>Space plasmas</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Wave propagation</topic><topic>Whistler waves</topic><topic>Whistlers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Micera, A.</creatorcontrib><creatorcontrib>Zhukov, A. N.</creatorcontrib><creatorcontrib>López, R. A.</creatorcontrib><creatorcontrib>Boella, E.</creatorcontrib><creatorcontrib>Tenerani, A.</creatorcontrib><creatorcontrib>Velli, M.</creatorcontrib><creatorcontrib>Lapenta, G.</creatorcontrib><creatorcontrib>Innocenti, M. E.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Micera, A.</au><au>Zhukov, A. N.</au><au>López, R. A.</au><au>Boella, E.</au><au>Tenerani, A.</au><au>Velli, M.</au><au>Lapenta, G.</au><au>Innocenti, M. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Role of Solar Wind Expansion as a Source of Whistler Waves: Scattering of Suprathermal Electrons and Heat Flux Regulation in the Inner Heliosphere</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>919</volume><issue>1</issue><spage>42</spage><pages>42-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The role of solar wind expansion in generating whistler waves is investigated using the EB-iPic3D code, which models solar wind expansion self-consistently within a fully kinetic semi-implicit approach. The simulation is initialized with an electron velocity distribution function modeled after observations of the Parker Solar Probe during its first perihelion at 0.166 au, consisting of a dense core and an antisunward strahl. This distribution function is initially stable with respect to kinetic instabilities. Expansion drives the solar wind into successive regimes where whistler heat flux instabilities are triggered. These instabilities produce sunward whistler waves initially characterized by predominantly oblique propagation with respect to the interplanetary magnetic field. The excited waves interact with the electrons via resonant scattering processes. As a consequence, the strahl pitch angle distribution broadens and its drift velocity reduces. The strahl electrons are scattered in the direction perpendicular to the magnetic field, and an electron halo is formed. At a later stage, resonant electron firehose instability is triggered and further affects the electron temperature anisotropy as the solar wind expands. Wave–particle interaction processes are accompanied by a substantial reduction of the solar wind heat flux. The simulated whistler waves are in qualitative agreement with observations in terms of wave frequencies, amplitudes, and propagation angles. Our work proposes an explanation for the observations of oblique and parallel whistler waves in the solar wind. We conclude that solar wind expansion has to be factored in when trying to explain kinetic processes at different heliocentric distances.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac1067</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1970-6794</orcidid><orcidid>https://orcid.org/0000-0002-2381-3106</orcidid><orcidid>https://orcid.org/0000-0003-3223-1498</orcidid><orcidid>https://orcid.org/0000-0003-2880-6084</orcidid><orcidid>https://orcid.org/0000-0001-9293-174X</orcidid><orcidid>https://orcid.org/0000-0002-3123-4024</orcidid><orcidid>https://orcid.org/0000-0002-5782-0013</orcidid><orcidid>https://orcid.org/0000-0002-2542-9810</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-09, Vol.919 (1), p.42
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2577066781
source Free E-Journal (出版社公開部分のみ)
subjects Anisotropy
Astrophysics
Charged particles
Distribution functions
Electron drift velocity
Electron energy
Electron velocity distribution
Expansion
Fluctuations
Heat flux
Heat transfer
Heliosphere
Interplanetary magnetic field
Magnetic fields
Particle interactions
Perihelions
Pitch (inclination)
Plasma astrophysics
Qualitative analysis
Scattering
Solar probes
Solar wind
Space plasmas
Velocity
Velocity distribution
Wave propagation
Whistler waves
Whistlers
title On the Role of Solar Wind Expansion as a Source of Whistler Waves: Scattering of Suprathermal Electrons and Heat Flux Regulation in the Inner Heliosphere
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Role%20of%20Solar%20Wind%20Expansion%20as%20a%20Source%20of%20Whistler%20Waves:%20Scattering%20of%20Suprathermal%20Electrons%20and%20Heat%20Flux%20Regulation%20in%20the%20Inner%20Heliosphere&rft.jtitle=The%20Astrophysical%20journal&rft.au=Micera,%20A.&rft.date=2021-09-01&rft.volume=919&rft.issue=1&rft.spage=42&rft.pages=42-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac1067&rft_dat=%3Cproquest_cross%3E2577066781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-c3e70128f8737d7b7511e4381775cf0eee715c5dc742a6c5d5bae88b36bc6fc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577066781&rft_id=info:pmid/&rfr_iscdi=true