Loading…
Experimental Demonstrations of Native Implementation of Boolean Logic Hamiltonian in a Superconducting Quantum Annealer
Experimental demonstrations of quantum annealing with "native" implementation of Boolean logic Hamiltonians are reported. As a superconducting integrated circuit, a problem Hamiltonian whose set of ground states is consistent with a given truth table is implemented for quantum annealing wi...
Saved in:
Published in: | IEEE transactions on quantum engineering 2021, Vol.2, p.1-8 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Experimental demonstrations of quantum annealing with "native" implementation of Boolean logic Hamiltonians are reported. As a superconducting integrated circuit, a problem Hamiltonian whose set of ground states is consistent with a given truth table is implemented for quantum annealing with no redundant qubits. As examples of the truth table, nand and nor are successfully fabricated as an identical circuit. Similarly, a native implementation of a multiplier comprising six superconducting flux qubits is also demonstrated. These native implementations of Hamiltonians consistent with Boolean logic provide an efficient and scalable way of applying annealing computation to so-called circuit satisfiability problems that aim to find a set of inputs consistent with a given output over any Boolean logic functions, especially those like factorization through a multiplier Hamiltonian. A proof-of-concept demonstration of a hybrid computing architecture for domain-specific quantum computing is described. |
---|---|
ISSN: | 2689-1808 2689-1808 |
DOI: | 10.1109/TQE.2021.3106776 |