Loading…

Action-Centered Information Retrieval

Information retrieval (IR) aims at retrieving documents that are most relevant to a query provided by a user. Traditional techniques rely mostly on syntactic methods. In some cases, however, links at a deeper semantic level must be considered. In this paper, we explore a type of IR task in which doc...

Full description

Saved in:
Bibliographic Details
Published in:Theory and practice of logic programming 2020-03, Vol.20 (2), p.249-272
Main Authors: BALDUCCINI, MARCELLO, LEBLANC, EMILY C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c225t-50442e2e3b3684ded36872e9cd1e61977f8973a40c7c268cf76d0da002929cd03
container_end_page 272
container_issue 2
container_start_page 249
container_title Theory and practice of logic programming
container_volume 20
creator BALDUCCINI, MARCELLO
LEBLANC, EMILY C.
description Information retrieval (IR) aims at retrieving documents that are most relevant to a query provided by a user. Traditional techniques rely mostly on syntactic methods. In some cases, however, links at a deeper semantic level must be considered. In this paper, we explore a type of IR task in which documents describe sequences of events, and queries are about the state of the world after such events. In this context, successfully matching documents and query requires considering the events’ possibly implicit uncertain effects and side effects. We begin by analyzing the problem, then propose an action language-based formalization, and finally automate the corresponding IR task using answer set programming.
doi_str_mv 10.1017/S1471068419000097
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2577678105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577678105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-50442e2e3b3684ded36872e9cd1e61977f8973a40c7c268cf76d0da002929cd03</originalsourceid><addsrcrecordid>eNplkE9LAzEQxYMoWKsfwFtBPEZnkmyyOZZFa6Eg-OccYjILW9rdmmwFv72p9eZc3vDmxzx4jF0j3CGguX9FZRB0rdBCGWtO2KRYFZdQ4-nvjvxwP2cXOa8BUEuhJux2HsZu6HlD_UiJ4mzZt0Pa-oM5e6ExdfTlN5fsrPWbTFd_OmXvjw9vzRNfPS-WzXzFgxDVyCtQSpAg-SFLUqRYxAiyISJptMa0tTXSKwgmCF2H1ugI0QMIKwoEcspujn93afjcUx7detinvkQ6URmjTY1QFQqPVEhDzolat0vd1qdvh-AObbh_bcgf7DVPeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577678105</pqid></control><display><type>article</type><title>Action-Centered Information Retrieval</title><source>Cambridge Journals Online</source><creator>BALDUCCINI, MARCELLO ; LEBLANC, EMILY C.</creator><creatorcontrib>BALDUCCINI, MARCELLO ; LEBLANC, EMILY C.</creatorcontrib><description>Information retrieval (IR) aims at retrieving documents that are most relevant to a query provided by a user. Traditional techniques rely mostly on syntactic methods. In some cases, however, links at a deeper semantic level must be considered. In this paper, we explore a type of IR task in which documents describe sequences of events, and queries are about the state of the world after such events. In this context, successfully matching documents and query requires considering the events’ possibly implicit uncertain effects and side effects. We begin by analyzing the problem, then propose an action language-based formalization, and finally automate the corresponding IR task using answer set programming.</description><identifier>ISSN: 1471-0684</identifier><identifier>EISSN: 1475-3081</identifier><identifier>DOI: 10.1017/S1471068419000097</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Declarative programming ; Information retrieval ; Mathematical programming ; Side effects</subject><ispartof>Theory and practice of logic programming, 2020-03, Vol.20 (2), p.249-272</ispartof><rights>Cambridge University Press 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-50442e2e3b3684ded36872e9cd1e61977f8973a40c7c268cf76d0da002929cd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>BALDUCCINI, MARCELLO</creatorcontrib><creatorcontrib>LEBLANC, EMILY C.</creatorcontrib><title>Action-Centered Information Retrieval</title><title>Theory and practice of logic programming</title><description>Information retrieval (IR) aims at retrieving documents that are most relevant to a query provided by a user. Traditional techniques rely mostly on syntactic methods. In some cases, however, links at a deeper semantic level must be considered. In this paper, we explore a type of IR task in which documents describe sequences of events, and queries are about the state of the world after such events. In this context, successfully matching documents and query requires considering the events’ possibly implicit uncertain effects and side effects. We begin by analyzing the problem, then propose an action language-based formalization, and finally automate the corresponding IR task using answer set programming.</description><subject>Declarative programming</subject><subject>Information retrieval</subject><subject>Mathematical programming</subject><subject>Side effects</subject><issn>1471-0684</issn><issn>1475-3081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEQxYMoWKsfwFtBPEZnkmyyOZZFa6Eg-OccYjILW9rdmmwFv72p9eZc3vDmxzx4jF0j3CGguX9FZRB0rdBCGWtO2KRYFZdQ4-nvjvxwP2cXOa8BUEuhJux2HsZu6HlD_UiJ4mzZt0Pa-oM5e6ExdfTlN5fsrPWbTFd_OmXvjw9vzRNfPS-WzXzFgxDVyCtQSpAg-SFLUqRYxAiyISJptMa0tTXSKwgmCF2H1ugI0QMIKwoEcspujn93afjcUx7detinvkQ6URmjTY1QFQqPVEhDzolat0vd1qdvh-AObbh_bcgf7DVPeg</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>BALDUCCINI, MARCELLO</creator><creator>LEBLANC, EMILY C.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>202003</creationdate><title>Action-Centered Information Retrieval</title><author>BALDUCCINI, MARCELLO ; LEBLANC, EMILY C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-50442e2e3b3684ded36872e9cd1e61977f8973a40c7c268cf76d0da002929cd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Declarative programming</topic><topic>Information retrieval</topic><topic>Mathematical programming</topic><topic>Side effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BALDUCCINI, MARCELLO</creatorcontrib><creatorcontrib>LEBLANC, EMILY C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory and practice of logic programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BALDUCCINI, MARCELLO</au><au>LEBLANC, EMILY C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Action-Centered Information Retrieval</atitle><jtitle>Theory and practice of logic programming</jtitle><date>2020-03</date><risdate>2020</risdate><volume>20</volume><issue>2</issue><spage>249</spage><epage>272</epage><pages>249-272</pages><issn>1471-0684</issn><eissn>1475-3081</eissn><abstract>Information retrieval (IR) aims at retrieving documents that are most relevant to a query provided by a user. Traditional techniques rely mostly on syntactic methods. In some cases, however, links at a deeper semantic level must be considered. In this paper, we explore a type of IR task in which documents describe sequences of events, and queries are about the state of the world after such events. In this context, successfully matching documents and query requires considering the events’ possibly implicit uncertain effects and side effects. We begin by analyzing the problem, then propose an action language-based formalization, and finally automate the corresponding IR task using answer set programming.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S1471068419000097</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1471-0684
ispartof Theory and practice of logic programming, 2020-03, Vol.20 (2), p.249-272
issn 1471-0684
1475-3081
language eng
recordid cdi_proquest_journals_2577678105
source Cambridge Journals Online
subjects Declarative programming
Information retrieval
Mathematical programming
Side effects
title Action-Centered Information Retrieval
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Action-Centered%20Information%20Retrieval&rft.jtitle=Theory%20and%20practice%20of%20logic%20programming&rft.au=BALDUCCINI,%20MARCELLO&rft.date=2020-03&rft.volume=20&rft.issue=2&rft.spage=249&rft.epage=272&rft.pages=249-272&rft.issn=1471-0684&rft.eissn=1475-3081&rft_id=info:doi/10.1017/S1471068419000097&rft_dat=%3Cproquest_cross%3E2577678105%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-50442e2e3b3684ded36872e9cd1e61977f8973a40c7c268cf76d0da002929cd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577678105&rft_id=info:pmid/&rfr_iscdi=true