Loading…

Sulphur and oxygen isotope signatures of dissolved sulphate in freshwater from King George Island, Antarctic Peninsula

The sulphate ion (SO42-) is one of major species in freshwater as well as seawater, originating from various natural and anthropogenic processes (Krouse & Mayer 2000). Compared to the Northern Hemisphere, where human activities affect the sulphate concentration and isotopic signatures, the contr...

Full description

Saved in:
Bibliographic Details
Published in:Antarctic science 2021-08, Vol.33 (4), p.415-417
Main Authors: Kim, Yeongmin, Lee, Insung, Mayer, Bernhard, Kim, Guebuem, Lee, Jong Ik, Kim, Hyoungbum
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The sulphate ion (SO42-) is one of major species in freshwater as well as seawater, originating from various natural and anthropogenic processes (Krouse & Mayer 2000). Compared to the Northern Hemisphere, where human activities affect the sulphate concentration and isotopic signatures, the contribution of anthropogenic sulphate is likely to be negligible in freshwater and ice cores in the Antarctic region (Patris et al. 2002). This means that the sulphur and oxygen isotope compositions of the dissolved sulphate could hint at information on the sources, formation and deposition due to various natural processes and sulphur cycling in the Antarctic region, especially for the dissolved sulphate in surface waters such as ponds and creeks (Patris et al. 2000, Kim et al. 2017). Here we report the ion concentration and sulphur and oxygen isotope compositions of the dissolved sulphate in freshwater from King George Island in the Antarctic Peninsula, which provide implications regarding the sources of the dissolved sulphate and the sulphur cycling in the Antarctic region.
ISSN:0954-1020
1365-2079
DOI:10.1017/S0954102021000286