Loading…
Sulphur and oxygen isotope signatures of dissolved sulphate in freshwater from King George Island, Antarctic Peninsula
The sulphate ion (SO42-) is one of major species in freshwater as well as seawater, originating from various natural and anthropogenic processes (Krouse & Mayer 2000). Compared to the Northern Hemisphere, where human activities affect the sulphate concentration and isotopic signatures, the contr...
Saved in:
Published in: | Antarctic science 2021-08, Vol.33 (4), p.415-417 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The sulphate ion (SO42-) is one of major species in freshwater as well as seawater, originating from various natural and anthropogenic processes (Krouse & Mayer 2000). Compared to the Northern Hemisphere, where human activities affect the sulphate concentration and isotopic signatures, the contribution of anthropogenic sulphate is likely to be negligible in freshwater and ice cores in the Antarctic region (Patris et al. 2002). This means that the sulphur and oxygen isotope compositions of the dissolved sulphate could hint at information on the sources, formation and deposition due to various natural processes and sulphur cycling in the Antarctic region, especially for the dissolved sulphate in surface waters such as ponds and creeks (Patris et al. 2000, Kim et al. 2017). Here we report the ion concentration and sulphur and oxygen isotope compositions of the dissolved sulphate in freshwater from King George Island in the Antarctic Peninsula, which provide implications regarding the sources of the dissolved sulphate and the sulphur cycling in the Antarctic region. |
---|---|
ISSN: | 0954-1020 1365-2079 |
DOI: | 10.1017/S0954102021000286 |