Loading…
Impact of heat stress responsive factors on growth and physiology of cotton (Gossypium hirsutum L.)
Pakistan ranked highest with reference to average temperatures in cotton growing areas of the world. The heat waves are becoming more intense and unpredictable due to climate change. Identification of heat tolerant genotypes requires comprehensive screening using molecular, physiological and morphol...
Saved in:
Published in: | Molecular biology reports 2021-02, Vol.48 (2), p.1069-1079 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-31c3a90b2cbd8fcf7304fef01bc801e7e74fd3b8c9ea0ddcd5ce31088b5c7203 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-31c3a90b2cbd8fcf7304fef01bc801e7e74fd3b8c9ea0ddcd5ce31088b5c7203 |
container_end_page | 1079 |
container_issue | 2 |
container_start_page | 1069 |
container_title | Molecular biology reports |
container_volume | 48 |
creator | Saleem, Muhammad Asif Malik, Waqas Qayyum, Abdul Ul-Allah, Sami Ahmad, Muhammad Qadir Afzal, Hammad Amjid, Muhammad Waqas Ateeq, Muhammad Farjad Zia, Zia Ullah |
description | Pakistan ranked highest with reference to average temperatures in cotton growing areas of the world. The heat waves are becoming more intense and unpredictable due to climate change. Identification of heat tolerant genotypes requires comprehensive screening using molecular, physiological and morphological analysis. Heat shock proteins play an important role in tolerance against heat stress. In the current study, eight heat stress responsive factors, proteins and genes (HSFA2, GHSP26, GHPP2A, HSP101, HSC70-1, HSP3, APX1 and ANNAT8) were evaluated morphologically and physiologically for their role in heat stress tolerance. For this purpose, cotton crop was grown at two temperature conditions i.e. normal weather and heat stress at 45 °C. For molecular analysis, genotypes were screened for the presence or absence of heat shock protein genes. Physiological analysis of genotypes was conducted to assess net photosynthesis, stomatal conductance, transpiration rate, leaf-air temperature and cell membrane stability under control as well as high temperature. The traits photosynthesis, cell membrane stability, leaf-air temperature and number of heat stress responsive factors in each genotypes showed a strong correlation with boll retention percentage under heat stress. The genotypes with maximum heat shock protein genes such as Cyto-177, MNH-886, VH-305 and Cyto-515 showed increased photosynthesis, stomatal conductance, negative leaf-air temperature and high boll retention percentage under heat stress condition. These varieties may be used as heat tolerant breeding material. |
doi_str_mv | 10.1007/s11033-021-06217-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2577744309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577744309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-31c3a90b2cbd8fcf7304fef01bc801e7e74fd3b8c9ea0ddcd5ce31088b5c7203</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqXwAgzIEgsMLsdxUicjqqBUqsTS3Uocu0nVxsF2QOnT4xIuG8vxkf7LsT6ErilMKQB_cJQCYwQiSmAWUU4OJ2hME85InPH0FI2BASVxmtARunBuCwAx5ck5GjE2gyyasTGSy32bS4-NxpXKPXbeKudwGK1pXP2usA6ysQ6bBm-s-fAVzpsSt1XvarMzm_4Ylcb7oN8tjHN9W3d7XNXWdT4sq-n9JTrT-c6pq-93gtbPT-v5C1m9LpbzxxWRjCeeMCpZnkERyaJMtdScQayVBlrIFKjiise6ZEUqM5VDWcoykYpRSNMikTwCNkG3Q21rzVunnBdb09kmXBRRwjmPYwZZcEWDS9rwWau0aG29z20vKIgjVjFgFQGr-MIqDiF0813dFXtV_kZ-OAYDGwwuSM1G2b_b_9R-ApNUhQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577744309</pqid></control><display><type>article</type><title>Impact of heat stress responsive factors on growth and physiology of cotton (Gossypium hirsutum L.)</title><source>Springer Nature</source><creator>Saleem, Muhammad Asif ; Malik, Waqas ; Qayyum, Abdul ; Ul-Allah, Sami ; Ahmad, Muhammad Qadir ; Afzal, Hammad ; Amjid, Muhammad Waqas ; Ateeq, Muhammad Farjad ; Zia, Zia Ullah</creator><creatorcontrib>Saleem, Muhammad Asif ; Malik, Waqas ; Qayyum, Abdul ; Ul-Allah, Sami ; Ahmad, Muhammad Qadir ; Afzal, Hammad ; Amjid, Muhammad Waqas ; Ateeq, Muhammad Farjad ; Zia, Zia Ullah</creatorcontrib><description>Pakistan ranked highest with reference to average temperatures in cotton growing areas of the world. The heat waves are becoming more intense and unpredictable due to climate change. Identification of heat tolerant genotypes requires comprehensive screening using molecular, physiological and morphological analysis. Heat shock proteins play an important role in tolerance against heat stress. In the current study, eight heat stress responsive factors, proteins and genes (HSFA2, GHSP26, GHPP2A, HSP101, HSC70-1, HSP3, APX1 and ANNAT8) were evaluated morphologically and physiologically for their role in heat stress tolerance. For this purpose, cotton crop was grown at two temperature conditions i.e. normal weather and heat stress at 45 °C. For molecular analysis, genotypes were screened for the presence or absence of heat shock protein genes. Physiological analysis of genotypes was conducted to assess net photosynthesis, stomatal conductance, transpiration rate, leaf-air temperature and cell membrane stability under control as well as high temperature. The traits photosynthesis, cell membrane stability, leaf-air temperature and number of heat stress responsive factors in each genotypes showed a strong correlation with boll retention percentage under heat stress. The genotypes with maximum heat shock protein genes such as Cyto-177, MNH-886, VH-305 and Cyto-515 showed increased photosynthesis, stomatal conductance, negative leaf-air temperature and high boll retention percentage under heat stress condition. These varieties may be used as heat tolerant breeding material.</description><identifier>ISSN: 0301-4851</identifier><identifier>EISSN: 1573-4978</identifier><identifier>DOI: 10.1007/s11033-021-06217-z</identifier><identifier>PMID: 33609263</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Air temperature ; Animal Anatomy ; Animal Biochemistry ; Biomedical and Life Sciences ; Cell membranes ; Chlorophyll - genetics ; Climate change ; Conductance ; Cotton ; Droughts ; Genotype ; Genotypes ; Gossypium - genetics ; Gossypium - growth & development ; Gossypium hirsutum ; Heat ; Heat shock proteins ; Heat stress ; Heat-Shock Response - genetics ; High temperature ; Histology ; Hot Temperature ; Hsc70 protein ; Leaves ; Life Sciences ; Morphology ; Original Article ; Pakistan ; Photosynthesis ; Photosynthesis - genetics ; Physiology ; Plant Breeding ; Plant Leaves - genetics ; Plant Leaves - growth & development ; Stomata ; Temperature tolerance ; Transpiration</subject><ispartof>Molecular biology reports, 2021-02, Vol.48 (2), p.1069-1079</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-31c3a90b2cbd8fcf7304fef01bc801e7e74fd3b8c9ea0ddcd5ce31088b5c7203</citedby><cites>FETCH-LOGICAL-c375t-31c3a90b2cbd8fcf7304fef01bc801e7e74fd3b8c9ea0ddcd5ce31088b5c7203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33609263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saleem, Muhammad Asif</creatorcontrib><creatorcontrib>Malik, Waqas</creatorcontrib><creatorcontrib>Qayyum, Abdul</creatorcontrib><creatorcontrib>Ul-Allah, Sami</creatorcontrib><creatorcontrib>Ahmad, Muhammad Qadir</creatorcontrib><creatorcontrib>Afzal, Hammad</creatorcontrib><creatorcontrib>Amjid, Muhammad Waqas</creatorcontrib><creatorcontrib>Ateeq, Muhammad Farjad</creatorcontrib><creatorcontrib>Zia, Zia Ullah</creatorcontrib><title>Impact of heat stress responsive factors on growth and physiology of cotton (Gossypium hirsutum L.)</title><title>Molecular biology reports</title><addtitle>Mol Biol Rep</addtitle><addtitle>Mol Biol Rep</addtitle><description>Pakistan ranked highest with reference to average temperatures in cotton growing areas of the world. The heat waves are becoming more intense and unpredictable due to climate change. Identification of heat tolerant genotypes requires comprehensive screening using molecular, physiological and morphological analysis. Heat shock proteins play an important role in tolerance against heat stress. In the current study, eight heat stress responsive factors, proteins and genes (HSFA2, GHSP26, GHPP2A, HSP101, HSC70-1, HSP3, APX1 and ANNAT8) were evaluated morphologically and physiologically for their role in heat stress tolerance. For this purpose, cotton crop was grown at two temperature conditions i.e. normal weather and heat stress at 45 °C. For molecular analysis, genotypes were screened for the presence or absence of heat shock protein genes. Physiological analysis of genotypes was conducted to assess net photosynthesis, stomatal conductance, transpiration rate, leaf-air temperature and cell membrane stability under control as well as high temperature. The traits photosynthesis, cell membrane stability, leaf-air temperature and number of heat stress responsive factors in each genotypes showed a strong correlation with boll retention percentage under heat stress. The genotypes with maximum heat shock protein genes such as Cyto-177, MNH-886, VH-305 and Cyto-515 showed increased photosynthesis, stomatal conductance, negative leaf-air temperature and high boll retention percentage under heat stress condition. These varieties may be used as heat tolerant breeding material.</description><subject>Air temperature</subject><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell membranes</subject><subject>Chlorophyll - genetics</subject><subject>Climate change</subject><subject>Conductance</subject><subject>Cotton</subject><subject>Droughts</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Gossypium - genetics</subject><subject>Gossypium - growth & development</subject><subject>Gossypium hirsutum</subject><subject>Heat</subject><subject>Heat shock proteins</subject><subject>Heat stress</subject><subject>Heat-Shock Response - genetics</subject><subject>High temperature</subject><subject>Histology</subject><subject>Hot Temperature</subject><subject>Hsc70 protein</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Morphology</subject><subject>Original Article</subject><subject>Pakistan</subject><subject>Photosynthesis</subject><subject>Photosynthesis - genetics</subject><subject>Physiology</subject><subject>Plant Breeding</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - growth & development</subject><subject>Stomata</subject><subject>Temperature tolerance</subject><subject>Transpiration</subject><issn>0301-4851</issn><issn>1573-4978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EoqXwAgzIEgsMLsdxUicjqqBUqsTS3Uocu0nVxsF2QOnT4xIuG8vxkf7LsT6ErilMKQB_cJQCYwQiSmAWUU4OJ2hME85InPH0FI2BASVxmtARunBuCwAx5ck5GjE2gyyasTGSy32bS4-NxpXKPXbeKudwGK1pXP2usA6ysQ6bBm-s-fAVzpsSt1XvarMzm_4Ylcb7oN8tjHN9W3d7XNXWdT4sq-n9JTrT-c6pq-93gtbPT-v5C1m9LpbzxxWRjCeeMCpZnkERyaJMtdScQayVBlrIFKjiise6ZEUqM5VDWcoykYpRSNMikTwCNkG3Q21rzVunnBdb09kmXBRRwjmPYwZZcEWDS9rwWau0aG29z20vKIgjVjFgFQGr-MIqDiF0813dFXtV_kZ-OAYDGwwuSM1G2b_b_9R-ApNUhQ8</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Saleem, Muhammad Asif</creator><creator>Malik, Waqas</creator><creator>Qayyum, Abdul</creator><creator>Ul-Allah, Sami</creator><creator>Ahmad, Muhammad Qadir</creator><creator>Afzal, Hammad</creator><creator>Amjid, Muhammad Waqas</creator><creator>Ateeq, Muhammad Farjad</creator><creator>Zia, Zia Ullah</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20210201</creationdate><title>Impact of heat stress responsive factors on growth and physiology of cotton (Gossypium hirsutum L.)</title><author>Saleem, Muhammad Asif ; Malik, Waqas ; Qayyum, Abdul ; Ul-Allah, Sami ; Ahmad, Muhammad Qadir ; Afzal, Hammad ; Amjid, Muhammad Waqas ; Ateeq, Muhammad Farjad ; Zia, Zia Ullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-31c3a90b2cbd8fcf7304fef01bc801e7e74fd3b8c9ea0ddcd5ce31088b5c7203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air temperature</topic><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell membranes</topic><topic>Chlorophyll - genetics</topic><topic>Climate change</topic><topic>Conductance</topic><topic>Cotton</topic><topic>Droughts</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Gossypium - genetics</topic><topic>Gossypium - growth & development</topic><topic>Gossypium hirsutum</topic><topic>Heat</topic><topic>Heat shock proteins</topic><topic>Heat stress</topic><topic>Heat-Shock Response - genetics</topic><topic>High temperature</topic><topic>Histology</topic><topic>Hot Temperature</topic><topic>Hsc70 protein</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Morphology</topic><topic>Original Article</topic><topic>Pakistan</topic><topic>Photosynthesis</topic><topic>Photosynthesis - genetics</topic><topic>Physiology</topic><topic>Plant Breeding</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - growth & development</topic><topic>Stomata</topic><topic>Temperature tolerance</topic><topic>Transpiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saleem, Muhammad Asif</creatorcontrib><creatorcontrib>Malik, Waqas</creatorcontrib><creatorcontrib>Qayyum, Abdul</creatorcontrib><creatorcontrib>Ul-Allah, Sami</creatorcontrib><creatorcontrib>Ahmad, Muhammad Qadir</creatorcontrib><creatorcontrib>Afzal, Hammad</creatorcontrib><creatorcontrib>Amjid, Muhammad Waqas</creatorcontrib><creatorcontrib>Ateeq, Muhammad Farjad</creatorcontrib><creatorcontrib>Zia, Zia Ullah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Molecular biology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saleem, Muhammad Asif</au><au>Malik, Waqas</au><au>Qayyum, Abdul</au><au>Ul-Allah, Sami</au><au>Ahmad, Muhammad Qadir</au><au>Afzal, Hammad</au><au>Amjid, Muhammad Waqas</au><au>Ateeq, Muhammad Farjad</au><au>Zia, Zia Ullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of heat stress responsive factors on growth and physiology of cotton (Gossypium hirsutum L.)</atitle><jtitle>Molecular biology reports</jtitle><stitle>Mol Biol Rep</stitle><addtitle>Mol Biol Rep</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>48</volume><issue>2</issue><spage>1069</spage><epage>1079</epage><pages>1069-1079</pages><issn>0301-4851</issn><eissn>1573-4978</eissn><abstract>Pakistan ranked highest with reference to average temperatures in cotton growing areas of the world. The heat waves are becoming more intense and unpredictable due to climate change. Identification of heat tolerant genotypes requires comprehensive screening using molecular, physiological and morphological analysis. Heat shock proteins play an important role in tolerance against heat stress. In the current study, eight heat stress responsive factors, proteins and genes (HSFA2, GHSP26, GHPP2A, HSP101, HSC70-1, HSP3, APX1 and ANNAT8) were evaluated morphologically and physiologically for their role in heat stress tolerance. For this purpose, cotton crop was grown at two temperature conditions i.e. normal weather and heat stress at 45 °C. For molecular analysis, genotypes were screened for the presence or absence of heat shock protein genes. Physiological analysis of genotypes was conducted to assess net photosynthesis, stomatal conductance, transpiration rate, leaf-air temperature and cell membrane stability under control as well as high temperature. The traits photosynthesis, cell membrane stability, leaf-air temperature and number of heat stress responsive factors in each genotypes showed a strong correlation with boll retention percentage under heat stress. The genotypes with maximum heat shock protein genes such as Cyto-177, MNH-886, VH-305 and Cyto-515 showed increased photosynthesis, stomatal conductance, negative leaf-air temperature and high boll retention percentage under heat stress condition. These varieties may be used as heat tolerant breeding material.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>33609263</pmid><doi>10.1007/s11033-021-06217-z</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-4851 |
ispartof | Molecular biology reports, 2021-02, Vol.48 (2), p.1069-1079 |
issn | 0301-4851 1573-4978 |
language | eng |
recordid | cdi_proquest_journals_2577744309 |
source | Springer Nature |
subjects | Air temperature Animal Anatomy Animal Biochemistry Biomedical and Life Sciences Cell membranes Chlorophyll - genetics Climate change Conductance Cotton Droughts Genotype Genotypes Gossypium - genetics Gossypium - growth & development Gossypium hirsutum Heat Heat shock proteins Heat stress Heat-Shock Response - genetics High temperature Histology Hot Temperature Hsc70 protein Leaves Life Sciences Morphology Original Article Pakistan Photosynthesis Photosynthesis - genetics Physiology Plant Breeding Plant Leaves - genetics Plant Leaves - growth & development Stomata Temperature tolerance Transpiration |
title | Impact of heat stress responsive factors on growth and physiology of cotton (Gossypium hirsutum L.) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20heat%20stress%20responsive%20factors%20on%20growth%20and%20physiology%20of%20cotton%20(Gossypium%20hirsutum%20L.)&rft.jtitle=Molecular%20biology%20reports&rft.au=Saleem,%20Muhammad%20Asif&rft.date=2021-02-01&rft.volume=48&rft.issue=2&rft.spage=1069&rft.epage=1079&rft.pages=1069-1079&rft.issn=0301-4851&rft.eissn=1573-4978&rft_id=info:doi/10.1007/s11033-021-06217-z&rft_dat=%3Cproquest_cross%3E2577744309%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-31c3a90b2cbd8fcf7304fef01bc801e7e74fd3b8c9ea0ddcd5ce31088b5c7203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577744309&rft_id=info:pmid/33609263&rfr_iscdi=true |