Loading…
Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters
We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected squared L 2 misfit between the state ( i.e....
Saved in:
Published in: | ESAIM. Mathematical modelling and numerical analysis 2021-07, Vol.55 (4), p.1599-1633 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c301t-bbc043cf6859a8b9ee9ae729ba4ddd61f310f0ef7c583a72ece7f4b2650fffab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c301t-bbc043cf6859a8b9ee9ae729ba4ddd61f310f0ef7c583a72ece7f4b2650fffab3 |
container_end_page | 1633 |
container_issue | 4 |
container_start_page | 1599 |
container_title | ESAIM. Mathematical modelling and numerical analysis |
container_volume | 55 |
creator | Martin, Matthieu Krumscheid, Sebastian Nobile, Fabio |
description | We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected squared
L
2
misfit between the state (
i.e.
solution to the PDE) and a target function, subject to a regularization for well posedness. For the numerical treatment of this risk-averse Optimal Control Problem (OCP) we consider a Finite Element discretization of the underlying PDE, a Monte Carlo sampling method, and gradient-type iterations to obtain the approximate optimal control. We provide full error and complexity analyses of the proposed numerical schemes. In particular we investigate the complexity of a conjugate gradient method applied to the fully discretized OCP (so called Sample Average Approximation), in which the Finite Element discretization and Monte Carlo sample are chosen in advance and kept fixed over the iterations. This is compared with a
Stochastic Gradient
method on a fixed or varying Finite Element discretization, in which the expectation in the computation of the steepest descent direction is approximated by Monte Carlo estimators, independent across iterations, with small sample sizes. We show in particular that the second strategy results in an improved computational complexity. The theoretical error estimates and complexity results are confirmed by numerical experiments. |
doi_str_mv | 10.1051/m2an/2021025 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578152667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578152667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-bbc043cf6859a8b9ee9ae729ba4ddd61f310f0ef7c583a72ece7f4b2650fffab3</originalsourceid><addsrcrecordid>eNotkEtLw0AURgdRsFZ3_oABt8bemWTyWJZaH1CwCwV3YTK5Y1OSTJw7RfPvTamrb3P44BzGbgU8CFBi0UndLyRIAVKdsZmQBURxnohzNoMsTSKVx5-X7IpoDwACEjVj48p1Q4u_TRj5stftSA1xZzkFZ3aaQmP4l9d1g33gHYadq4lb5_n2cR0Z11Pwuumx5m4ITadbvnJ98K7lW--qFjviP03Y8UNv0IeJ5IP2evpBT9fswuqW8OZ_5-zjaf2-eok2b8-vq-UmMjGIEFWVgSQ2Ns1VofOqQCw0ZrKodFLXdSpsLMAC2sxMdjqTaDCzSSVTBdZaXcVzdnf6Hbz7PiCFcu8OflKlUqosF0qmaTZR9yfKeEfk0ZaDn4T8WAooj3HLY9zyP278B183cOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578152667</pqid></control><display><type>article</type><title>Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters</title><source>Freely Accessible Journals</source><creator>Martin, Matthieu ; Krumscheid, Sebastian ; Nobile, Fabio</creator><creatorcontrib>Martin, Matthieu ; Krumscheid, Sebastian ; Nobile, Fabio</creatorcontrib><description>We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected squared
L
2
misfit between the state (
i.e.
solution to the PDE) and a target function, subject to a regularization for well posedness. For the numerical treatment of this risk-averse Optimal Control Problem (OCP) we consider a Finite Element discretization of the underlying PDE, a Monte Carlo sampling method, and gradient-type iterations to obtain the approximate optimal control. We provide full error and complexity analyses of the proposed numerical schemes. In particular we investigate the complexity of a conjugate gradient method applied to the fully discretized OCP (so called Sample Average Approximation), in which the Finite Element discretization and Monte Carlo sample are chosen in advance and kept fixed over the iterations. This is compared with a
Stochastic Gradient
method on a fixed or varying Finite Element discretization, in which the expectation in the computation of the steepest descent direction is approximated by Monte Carlo estimators, independent across iterations, with small sample sizes. We show in particular that the second strategy results in an improved computational complexity. The theoretical error estimates and complexity results are confirmed by numerical experiments.</description><identifier>ISSN: 0764-583X</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2021025</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Approximation ; Complexity ; Conjugate gradient method ; Discretization ; Error analysis ; Optimal control ; Parameter uncertainty ; Partial differential equations ; Regularization ; Risk management ; Sampling methods</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2021-07, Vol.55 (4), p.1599-1633</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-bbc043cf6859a8b9ee9ae729ba4ddd61f310f0ef7c583a72ece7f4b2650fffab3</citedby><cites>FETCH-LOGICAL-c301t-bbc043cf6859a8b9ee9ae729ba4ddd61f310f0ef7c583a72ece7f4b2650fffab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Martin, Matthieu</creatorcontrib><creatorcontrib>Krumscheid, Sebastian</creatorcontrib><creatorcontrib>Nobile, Fabio</creatorcontrib><title>Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected squared
L
2
misfit between the state (
i.e.
solution to the PDE) and a target function, subject to a regularization for well posedness. For the numerical treatment of this risk-averse Optimal Control Problem (OCP) we consider a Finite Element discretization of the underlying PDE, a Monte Carlo sampling method, and gradient-type iterations to obtain the approximate optimal control. We provide full error and complexity analyses of the proposed numerical schemes. In particular we investigate the complexity of a conjugate gradient method applied to the fully discretized OCP (so called Sample Average Approximation), in which the Finite Element discretization and Monte Carlo sample are chosen in advance and kept fixed over the iterations. This is compared with a
Stochastic Gradient
method on a fixed or varying Finite Element discretization, in which the expectation in the computation of the steepest descent direction is approximated by Monte Carlo estimators, independent across iterations, with small sample sizes. We show in particular that the second strategy results in an improved computational complexity. The theoretical error estimates and complexity results are confirmed by numerical experiments.</description><subject>Approximation</subject><subject>Complexity</subject><subject>Conjugate gradient method</subject><subject>Discretization</subject><subject>Error analysis</subject><subject>Optimal control</subject><subject>Parameter uncertainty</subject><subject>Partial differential equations</subject><subject>Regularization</subject><subject>Risk management</subject><subject>Sampling methods</subject><issn>0764-583X</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkEtLw0AURgdRsFZ3_oABt8bemWTyWJZaH1CwCwV3YTK5Y1OSTJw7RfPvTamrb3P44BzGbgU8CFBi0UndLyRIAVKdsZmQBURxnohzNoMsTSKVx5-X7IpoDwACEjVj48p1Q4u_TRj5stftSA1xZzkFZ3aaQmP4l9d1g33gHYadq4lb5_n2cR0Z11Pwuumx5m4ITadbvnJ98K7lW--qFjviP03Y8UNv0IeJ5IP2evpBT9fswuqW8OZ_5-zjaf2-eok2b8-vq-UmMjGIEFWVgSQ2Ns1VofOqQCw0ZrKodFLXdSpsLMAC2sxMdjqTaDCzSSVTBdZaXcVzdnf6Hbz7PiCFcu8OflKlUqosF0qmaTZR9yfKeEfk0ZaDn4T8WAooj3HLY9zyP278B183cOI</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Martin, Matthieu</creator><creator>Krumscheid, Sebastian</creator><creator>Nobile, Fabio</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210701</creationdate><title>Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters</title><author>Martin, Matthieu ; Krumscheid, Sebastian ; Nobile, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-bbc043cf6859a8b9ee9ae729ba4ddd61f310f0ef7c583a72ece7f4b2650fffab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Complexity</topic><topic>Conjugate gradient method</topic><topic>Discretization</topic><topic>Error analysis</topic><topic>Optimal control</topic><topic>Parameter uncertainty</topic><topic>Partial differential equations</topic><topic>Regularization</topic><topic>Risk management</topic><topic>Sampling methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Matthieu</creatorcontrib><creatorcontrib>Krumscheid, Sebastian</creatorcontrib><creatorcontrib>Nobile, Fabio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Matthieu</au><au>Krumscheid, Sebastian</au><au>Nobile, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>55</volume><issue>4</issue><spage>1599</spage><epage>1633</epage><pages>1599-1633</pages><issn>0764-583X</issn><eissn>1290-3841</eissn><abstract>We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected squared
L
2
misfit between the state (
i.e.
solution to the PDE) and a target function, subject to a regularization for well posedness. For the numerical treatment of this risk-averse Optimal Control Problem (OCP) we consider a Finite Element discretization of the underlying PDE, a Monte Carlo sampling method, and gradient-type iterations to obtain the approximate optimal control. We provide full error and complexity analyses of the proposed numerical schemes. In particular we investigate the complexity of a conjugate gradient method applied to the fully discretized OCP (so called Sample Average Approximation), in which the Finite Element discretization and Monte Carlo sample are chosen in advance and kept fixed over the iterations. This is compared with a
Stochastic Gradient
method on a fixed or varying Finite Element discretization, in which the expectation in the computation of the steepest descent direction is approximated by Monte Carlo estimators, independent across iterations, with small sample sizes. We show in particular that the second strategy results in an improved computational complexity. The theoretical error estimates and complexity results are confirmed by numerical experiments.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2021025</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0764-583X |
ispartof | ESAIM. Mathematical modelling and numerical analysis, 2021-07, Vol.55 (4), p.1599-1633 |
issn | 0764-583X 1290-3841 |
language | eng |
recordid | cdi_proquest_journals_2578152667 |
source | Freely Accessible Journals |
subjects | Approximation Complexity Conjugate gradient method Discretization Error analysis Optimal control Parameter uncertainty Partial differential equations Regularization Risk management Sampling methods |
title | Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20Analysis%20of%20stochastic%20gradient%20methods%20for%20PDE-constrained%20optimal%20Control%20Problems%20with%20uncertain%20parameters&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Martin,%20Matthieu&rft.date=2021-07-01&rft.volume=55&rft.issue=4&rft.spage=1599&rft.epage=1633&rft.pages=1599-1633&rft.issn=0764-583X&rft.eissn=1290-3841&rft_id=info:doi/10.1051/m2an/2021025&rft_dat=%3Cproquest_cross%3E2578152667%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-bbc043cf6859a8b9ee9ae729ba4ddd61f310f0ef7c583a72ece7f4b2650fffab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578152667&rft_id=info:pmid/&rfr_iscdi=true |