Loading…

Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters

We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected squared L 2 misfit between the state ( i.e....

Full description

Saved in:
Bibliographic Details
Published in:ESAIM. Mathematical modelling and numerical analysis 2021-07, Vol.55 (4), p.1599-1633
Main Authors: Martin, Matthieu, Krumscheid, Sebastian, Nobile, Fabio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c301t-bbc043cf6859a8b9ee9ae729ba4ddd61f310f0ef7c583a72ece7f4b2650fffab3
cites cdi_FETCH-LOGICAL-c301t-bbc043cf6859a8b9ee9ae729ba4ddd61f310f0ef7c583a72ece7f4b2650fffab3
container_end_page 1633
container_issue 4
container_start_page 1599
container_title ESAIM. Mathematical modelling and numerical analysis
container_volume 55
creator Martin, Matthieu
Krumscheid, Sebastian
Nobile, Fabio
description We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected squared L 2 misfit between the state ( i.e. solution to the PDE) and a target function, subject to a regularization for well posedness. For the numerical treatment of this risk-averse Optimal Control Problem (OCP) we consider a Finite Element discretization of the underlying PDE, a Monte Carlo sampling method, and gradient-type iterations to obtain the approximate optimal control. We provide full error and complexity analyses of the proposed numerical schemes. In particular we investigate the complexity of a conjugate gradient method applied to the fully discretized OCP (so called Sample Average Approximation), in which the Finite Element discretization and Monte Carlo sample are chosen in advance and kept fixed over the iterations. This is compared with a Stochastic Gradient method on a fixed or varying Finite Element discretization, in which the expectation in the computation of the steepest descent direction is approximated by Monte Carlo estimators, independent across iterations, with small sample sizes. We show in particular that the second strategy results in an improved computational complexity. The theoretical error estimates and complexity results are confirmed by numerical experiments.
doi_str_mv 10.1051/m2an/2021025
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578152667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578152667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-bbc043cf6859a8b9ee9ae729ba4ddd61f310f0ef7c583a72ece7f4b2650fffab3</originalsourceid><addsrcrecordid>eNotkEtLw0AURgdRsFZ3_oABt8bemWTyWJZaH1CwCwV3YTK5Y1OSTJw7RfPvTamrb3P44BzGbgU8CFBi0UndLyRIAVKdsZmQBURxnohzNoMsTSKVx5-X7IpoDwACEjVj48p1Q4u_TRj5stftSA1xZzkFZ3aaQmP4l9d1g33gHYadq4lb5_n2cR0Z11Pwuumx5m4ITadbvnJ98K7lW--qFjviP03Y8UNv0IeJ5IP2evpBT9fswuqW8OZ_5-zjaf2-eok2b8-vq-UmMjGIEFWVgSQ2Ns1VofOqQCw0ZrKodFLXdSpsLMAC2sxMdjqTaDCzSSVTBdZaXcVzdnf6Hbz7PiCFcu8OflKlUqosF0qmaTZR9yfKeEfk0ZaDn4T8WAooj3HLY9zyP278B183cOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578152667</pqid></control><display><type>article</type><title>Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters</title><source>Freely Accessible Journals</source><creator>Martin, Matthieu ; Krumscheid, Sebastian ; Nobile, Fabio</creator><creatorcontrib>Martin, Matthieu ; Krumscheid, Sebastian ; Nobile, Fabio</creatorcontrib><description>We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected squared L 2 misfit between the state ( i.e. solution to the PDE) and a target function, subject to a regularization for well posedness. For the numerical treatment of this risk-averse Optimal Control Problem (OCP) we consider a Finite Element discretization of the underlying PDE, a Monte Carlo sampling method, and gradient-type iterations to obtain the approximate optimal control. We provide full error and complexity analyses of the proposed numerical schemes. In particular we investigate the complexity of a conjugate gradient method applied to the fully discretized OCP (so called Sample Average Approximation), in which the Finite Element discretization and Monte Carlo sample are chosen in advance and kept fixed over the iterations. This is compared with a Stochastic Gradient method on a fixed or varying Finite Element discretization, in which the expectation in the computation of the steepest descent direction is approximated by Monte Carlo estimators, independent across iterations, with small sample sizes. We show in particular that the second strategy results in an improved computational complexity. The theoretical error estimates and complexity results are confirmed by numerical experiments.</description><identifier>ISSN: 0764-583X</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2021025</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Approximation ; Complexity ; Conjugate gradient method ; Discretization ; Error analysis ; Optimal control ; Parameter uncertainty ; Partial differential equations ; Regularization ; Risk management ; Sampling methods</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2021-07, Vol.55 (4), p.1599-1633</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-bbc043cf6859a8b9ee9ae729ba4ddd61f310f0ef7c583a72ece7f4b2650fffab3</citedby><cites>FETCH-LOGICAL-c301t-bbc043cf6859a8b9ee9ae729ba4ddd61f310f0ef7c583a72ece7f4b2650fffab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Martin, Matthieu</creatorcontrib><creatorcontrib>Krumscheid, Sebastian</creatorcontrib><creatorcontrib>Nobile, Fabio</creatorcontrib><title>Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected squared L 2 misfit between the state ( i.e. solution to the PDE) and a target function, subject to a regularization for well posedness. For the numerical treatment of this risk-averse Optimal Control Problem (OCP) we consider a Finite Element discretization of the underlying PDE, a Monte Carlo sampling method, and gradient-type iterations to obtain the approximate optimal control. We provide full error and complexity analyses of the proposed numerical schemes. In particular we investigate the complexity of a conjugate gradient method applied to the fully discretized OCP (so called Sample Average Approximation), in which the Finite Element discretization and Monte Carlo sample are chosen in advance and kept fixed over the iterations. This is compared with a Stochastic Gradient method on a fixed or varying Finite Element discretization, in which the expectation in the computation of the steepest descent direction is approximated by Monte Carlo estimators, independent across iterations, with small sample sizes. We show in particular that the second strategy results in an improved computational complexity. The theoretical error estimates and complexity results are confirmed by numerical experiments.</description><subject>Approximation</subject><subject>Complexity</subject><subject>Conjugate gradient method</subject><subject>Discretization</subject><subject>Error analysis</subject><subject>Optimal control</subject><subject>Parameter uncertainty</subject><subject>Partial differential equations</subject><subject>Regularization</subject><subject>Risk management</subject><subject>Sampling methods</subject><issn>0764-583X</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkEtLw0AURgdRsFZ3_oABt8bemWTyWJZaH1CwCwV3YTK5Y1OSTJw7RfPvTamrb3P44BzGbgU8CFBi0UndLyRIAVKdsZmQBURxnohzNoMsTSKVx5-X7IpoDwACEjVj48p1Q4u_TRj5stftSA1xZzkFZ3aaQmP4l9d1g33gHYadq4lb5_n2cR0Z11Pwuumx5m4ITadbvnJ98K7lW--qFjviP03Y8UNv0IeJ5IP2evpBT9fswuqW8OZ_5-zjaf2-eok2b8-vq-UmMjGIEFWVgSQ2Ns1VofOqQCw0ZrKodFLXdSpsLMAC2sxMdjqTaDCzSSVTBdZaXcVzdnf6Hbz7PiCFcu8OflKlUqosF0qmaTZR9yfKeEfk0ZaDn4T8WAooj3HLY9zyP278B183cOI</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Martin, Matthieu</creator><creator>Krumscheid, Sebastian</creator><creator>Nobile, Fabio</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210701</creationdate><title>Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters</title><author>Martin, Matthieu ; Krumscheid, Sebastian ; Nobile, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-bbc043cf6859a8b9ee9ae729ba4ddd61f310f0ef7c583a72ece7f4b2650fffab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Complexity</topic><topic>Conjugate gradient method</topic><topic>Discretization</topic><topic>Error analysis</topic><topic>Optimal control</topic><topic>Parameter uncertainty</topic><topic>Partial differential equations</topic><topic>Regularization</topic><topic>Risk management</topic><topic>Sampling methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Matthieu</creatorcontrib><creatorcontrib>Krumscheid, Sebastian</creatorcontrib><creatorcontrib>Nobile, Fabio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Matthieu</au><au>Krumscheid, Sebastian</au><au>Nobile, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>55</volume><issue>4</issue><spage>1599</spage><epage>1633</epage><pages>1599-1633</pages><issn>0764-583X</issn><eissn>1290-3841</eissn><abstract>We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected squared L 2 misfit between the state ( i.e. solution to the PDE) and a target function, subject to a regularization for well posedness. For the numerical treatment of this risk-averse Optimal Control Problem (OCP) we consider a Finite Element discretization of the underlying PDE, a Monte Carlo sampling method, and gradient-type iterations to obtain the approximate optimal control. We provide full error and complexity analyses of the proposed numerical schemes. In particular we investigate the complexity of a conjugate gradient method applied to the fully discretized OCP (so called Sample Average Approximation), in which the Finite Element discretization and Monte Carlo sample are chosen in advance and kept fixed over the iterations. This is compared with a Stochastic Gradient method on a fixed or varying Finite Element discretization, in which the expectation in the computation of the steepest descent direction is approximated by Monte Carlo estimators, independent across iterations, with small sample sizes. We show in particular that the second strategy results in an improved computational complexity. The theoretical error estimates and complexity results are confirmed by numerical experiments.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2021025</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0764-583X
ispartof ESAIM. Mathematical modelling and numerical analysis, 2021-07, Vol.55 (4), p.1599-1633
issn 0764-583X
1290-3841
language eng
recordid cdi_proquest_journals_2578152667
source Freely Accessible Journals
subjects Approximation
Complexity
Conjugate gradient method
Discretization
Error analysis
Optimal control
Parameter uncertainty
Partial differential equations
Regularization
Risk management
Sampling methods
title Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20Analysis%20of%20stochastic%20gradient%20methods%20for%20PDE-constrained%20optimal%20Control%20Problems%20with%20uncertain%20parameters&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Martin,%20Matthieu&rft.date=2021-07-01&rft.volume=55&rft.issue=4&rft.spage=1599&rft.epage=1633&rft.pages=1599-1633&rft.issn=0764-583X&rft.eissn=1290-3841&rft_id=info:doi/10.1051/m2an/2021025&rft_dat=%3Cproquest_cross%3E2578152667%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-bbc043cf6859a8b9ee9ae729ba4ddd61f310f0ef7c583a72ece7f4b2650fffab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578152667&rft_id=info:pmid/&rfr_iscdi=true