Loading…
4D Printing of Multi‐Responsive Membrane for Accelerated In Vivo Bone Healing Via Remote Regulation of Stem Cell Fate
Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fate in tissue engineering. Translating this into in vivo tissue repair in a clinical setting remains challenging, which requires precise temporal control of multi‐scale structural features. Using 4D print...
Saved in:
Published in: | Advanced functional materials 2021-10, Vol.31 (40), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3170-191b0cabbd9b20a7f031c367521d6f065bde4b929fc24bb13c94d697ec44b5ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3170-191b0cabbd9b20a7f031c367521d6f065bde4b929fc24bb13c94d697ec44b5ee3 |
container_end_page | n/a |
container_issue | 40 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | You, Dongqi Chen, Guancong Liu, Chao Ye, Xin Wang, Shaolong Dong, Minyi Sun, Mouyuan He, Jianxiang Yu, Xiaowen Ye, Guanchen Li, Qi Wu, Junjie Wu, Jingjun Zhao, Qian Xie, Tao Yu, Mengfei Wang, Huiming |
description | Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fate in tissue engineering. Translating this into in vivo tissue repair in a clinical setting remains challenging, which requires precise temporal control of multi‐scale structural features. Using 4D printing technique, a multi‐responsive bilayer morphing membrane consisting of a shape memory polymer (SMP) layer and a hydrogel layer, is fabricated. The SMP layer is featured with responsive surface micro‐structures, which can switch the phase between proliferation and differentiation precisely, thus promoting the bone formation. The hydrogel layer endows the membrane with the ability to digitally regulate its 3D geometry, matching the specific macroscopic bone shape in clinical scenario. The authors’ in vivo experiments show that the 4D shape‐shifting membrane exhibits over 30% improvement in new bone formation in comparison to a reference membrane with static micro‐structure. More importantly, the 4D membrane can conformally wrap a bone defect model in a non‐invasive way and this strategy can be extended to repairs involving complex tissue defects.
Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fates. Taking it into a bone defect model, through DLP technology, a multi‐responsive bilayer morphing membrane with a shape memory polymer inside and programmable hydrogel outside, called a 4D printed membrane, provides the mechanism for macroscopic fitting for geometrically complex bone shapes and accelerated bone repair. |
doi_str_mv | 10.1002/adfm.202103920 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578159252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578159252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-191b0cabbd9b20a7f031c367521d6f065bde4b929fc24bb13c94d697ec44b5ee3</originalsourceid><addsrcrecordid>eNqFkM1OAjEUhRujiYhuXTdxDfZnfugSQYQEokEl7iZt5w4p6UyxMyNh5yP4jD6JM8Hg0tU5yT3fuclB6JqSPiWE3co0y_uMMEq4YOQEdWhEox4nbHB69PTtHF2U5YYQGsc86KBdMMZP3hSVKdbYZXhR28p8f34tody6ojQfgBeQKy8LwJnzeKg1WPCyghTPCrwyHw7fueY4BWnbjpWReAm5q6CRdW1lZVzRNj9XkOMRWIsnDX2JzjJpS7j61S56ndy_jKa9-ePDbDSc9zSnMelRQRXRUqlUKEZknBFONY_ikNE0ykgUqhQCJZjINAuUolyLII1EDDoIVAjAu-jm0Lv17r2Gsko2rvZF8zJhYTygoWAha1L9Q0p7V5YesmTrTS79PqEkacdN2nGT47gNIA7AzljY_5NOhuPJ4o_9AYIofrE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578159252</pqid></control><display><type>article</type><title>4D Printing of Multi‐Responsive Membrane for Accelerated In Vivo Bone Healing Via Remote Regulation of Stem Cell Fate</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>You, Dongqi ; Chen, Guancong ; Liu, Chao ; Ye, Xin ; Wang, Shaolong ; Dong, Minyi ; Sun, Mouyuan ; He, Jianxiang ; Yu, Xiaowen ; Ye, Guanchen ; Li, Qi ; Wu, Junjie ; Wu, Jingjun ; Zhao, Qian ; Xie, Tao ; Yu, Mengfei ; Wang, Huiming</creator><creatorcontrib>You, Dongqi ; Chen, Guancong ; Liu, Chao ; Ye, Xin ; Wang, Shaolong ; Dong, Minyi ; Sun, Mouyuan ; He, Jianxiang ; Yu, Xiaowen ; Ye, Guanchen ; Li, Qi ; Wu, Junjie ; Wu, Jingjun ; Zhao, Qian ; Xie, Tao ; Yu, Mengfei ; Wang, Huiming</creatorcontrib><description>Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fate in tissue engineering. Translating this into in vivo tissue repair in a clinical setting remains challenging, which requires precise temporal control of multi‐scale structural features. Using 4D printing technique, a multi‐responsive bilayer morphing membrane consisting of a shape memory polymer (SMP) layer and a hydrogel layer, is fabricated. The SMP layer is featured with responsive surface micro‐structures, which can switch the phase between proliferation and differentiation precisely, thus promoting the bone formation. The hydrogel layer endows the membrane with the ability to digitally regulate its 3D geometry, matching the specific macroscopic bone shape in clinical scenario. The authors’ in vivo experiments show that the 4D shape‐shifting membrane exhibits over 30% improvement in new bone formation in comparison to a reference membrane with static micro‐structure. More importantly, the 4D membrane can conformally wrap a bone defect model in a non‐invasive way and this strategy can be extended to repairs involving complex tissue defects.
Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fates. Taking it into a bone defect model, through DLP technology, a multi‐responsive bilayer morphing membrane with a shape memory polymer inside and programmable hydrogel outside, called a 4D printed membrane, provides the mechanism for macroscopic fitting for geometrically complex bone shapes and accelerated bone repair.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202103920</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>4D printing ; bilayer membrane ; bone healing ; Hydrogels ; Materials science ; Membranes ; Morphing ; Shape memory ; shape memory polymers ; stem cell fate ; Stem cells ; Substrates ; Tissue engineering</subject><ispartof>Advanced functional materials, 2021-10, Vol.31 (40), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-191b0cabbd9b20a7f031c367521d6f065bde4b929fc24bb13c94d697ec44b5ee3</citedby><cites>FETCH-LOGICAL-c3170-191b0cabbd9b20a7f031c367521d6f065bde4b929fc24bb13c94d697ec44b5ee3</cites><orcidid>0000-0002-7700-4697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>You, Dongqi</creatorcontrib><creatorcontrib>Chen, Guancong</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Ye, Xin</creatorcontrib><creatorcontrib>Wang, Shaolong</creatorcontrib><creatorcontrib>Dong, Minyi</creatorcontrib><creatorcontrib>Sun, Mouyuan</creatorcontrib><creatorcontrib>He, Jianxiang</creatorcontrib><creatorcontrib>Yu, Xiaowen</creatorcontrib><creatorcontrib>Ye, Guanchen</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Wu, Junjie</creatorcontrib><creatorcontrib>Wu, Jingjun</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Xie, Tao</creatorcontrib><creatorcontrib>Yu, Mengfei</creatorcontrib><creatorcontrib>Wang, Huiming</creatorcontrib><title>4D Printing of Multi‐Responsive Membrane for Accelerated In Vivo Bone Healing Via Remote Regulation of Stem Cell Fate</title><title>Advanced functional materials</title><description>Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fate in tissue engineering. Translating this into in vivo tissue repair in a clinical setting remains challenging, which requires precise temporal control of multi‐scale structural features. Using 4D printing technique, a multi‐responsive bilayer morphing membrane consisting of a shape memory polymer (SMP) layer and a hydrogel layer, is fabricated. The SMP layer is featured with responsive surface micro‐structures, which can switch the phase between proliferation and differentiation precisely, thus promoting the bone formation. The hydrogel layer endows the membrane with the ability to digitally regulate its 3D geometry, matching the specific macroscopic bone shape in clinical scenario. The authors’ in vivo experiments show that the 4D shape‐shifting membrane exhibits over 30% improvement in new bone formation in comparison to a reference membrane with static micro‐structure. More importantly, the 4D membrane can conformally wrap a bone defect model in a non‐invasive way and this strategy can be extended to repairs involving complex tissue defects.
Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fates. Taking it into a bone defect model, through DLP technology, a multi‐responsive bilayer morphing membrane with a shape memory polymer inside and programmable hydrogel outside, called a 4D printed membrane, provides the mechanism for macroscopic fitting for geometrically complex bone shapes and accelerated bone repair.</description><subject>4D printing</subject><subject>bilayer membrane</subject><subject>bone healing</subject><subject>Hydrogels</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Morphing</subject><subject>Shape memory</subject><subject>shape memory polymers</subject><subject>stem cell fate</subject><subject>Stem cells</subject><subject>Substrates</subject><subject>Tissue engineering</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAjEUhRujiYhuXTdxDfZnfugSQYQEokEl7iZt5w4p6UyxMyNh5yP4jD6JM8Hg0tU5yT3fuclB6JqSPiWE3co0y_uMMEq4YOQEdWhEox4nbHB69PTtHF2U5YYQGsc86KBdMMZP3hSVKdbYZXhR28p8f34tody6ojQfgBeQKy8LwJnzeKg1WPCyghTPCrwyHw7fueY4BWnbjpWReAm5q6CRdW1lZVzRNj9XkOMRWIsnDX2JzjJpS7j61S56ndy_jKa9-ePDbDSc9zSnMelRQRXRUqlUKEZknBFONY_ikNE0ykgUqhQCJZjINAuUolyLII1EDDoIVAjAu-jm0Lv17r2Gsko2rvZF8zJhYTygoWAha1L9Q0p7V5YesmTrTS79PqEkacdN2nGT47gNIA7AzljY_5NOhuPJ4o_9AYIofrE</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>You, Dongqi</creator><creator>Chen, Guancong</creator><creator>Liu, Chao</creator><creator>Ye, Xin</creator><creator>Wang, Shaolong</creator><creator>Dong, Minyi</creator><creator>Sun, Mouyuan</creator><creator>He, Jianxiang</creator><creator>Yu, Xiaowen</creator><creator>Ye, Guanchen</creator><creator>Li, Qi</creator><creator>Wu, Junjie</creator><creator>Wu, Jingjun</creator><creator>Zhao, Qian</creator><creator>Xie, Tao</creator><creator>Yu, Mengfei</creator><creator>Wang, Huiming</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7700-4697</orcidid></search><sort><creationdate>20211001</creationdate><title>4D Printing of Multi‐Responsive Membrane for Accelerated In Vivo Bone Healing Via Remote Regulation of Stem Cell Fate</title><author>You, Dongqi ; Chen, Guancong ; Liu, Chao ; Ye, Xin ; Wang, Shaolong ; Dong, Minyi ; Sun, Mouyuan ; He, Jianxiang ; Yu, Xiaowen ; Ye, Guanchen ; Li, Qi ; Wu, Junjie ; Wu, Jingjun ; Zhao, Qian ; Xie, Tao ; Yu, Mengfei ; Wang, Huiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-191b0cabbd9b20a7f031c367521d6f065bde4b929fc24bb13c94d697ec44b5ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>4D printing</topic><topic>bilayer membrane</topic><topic>bone healing</topic><topic>Hydrogels</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Morphing</topic><topic>Shape memory</topic><topic>shape memory polymers</topic><topic>stem cell fate</topic><topic>Stem cells</topic><topic>Substrates</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Dongqi</creatorcontrib><creatorcontrib>Chen, Guancong</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Ye, Xin</creatorcontrib><creatorcontrib>Wang, Shaolong</creatorcontrib><creatorcontrib>Dong, Minyi</creatorcontrib><creatorcontrib>Sun, Mouyuan</creatorcontrib><creatorcontrib>He, Jianxiang</creatorcontrib><creatorcontrib>Yu, Xiaowen</creatorcontrib><creatorcontrib>Ye, Guanchen</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Wu, Junjie</creatorcontrib><creatorcontrib>Wu, Jingjun</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Xie, Tao</creatorcontrib><creatorcontrib>Yu, Mengfei</creatorcontrib><creatorcontrib>Wang, Huiming</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Dongqi</au><au>Chen, Guancong</au><au>Liu, Chao</au><au>Ye, Xin</au><au>Wang, Shaolong</au><au>Dong, Minyi</au><au>Sun, Mouyuan</au><au>He, Jianxiang</au><au>Yu, Xiaowen</au><au>Ye, Guanchen</au><au>Li, Qi</au><au>Wu, Junjie</au><au>Wu, Jingjun</au><au>Zhao, Qian</au><au>Xie, Tao</au><au>Yu, Mengfei</au><au>Wang, Huiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>4D Printing of Multi‐Responsive Membrane for Accelerated In Vivo Bone Healing Via Remote Regulation of Stem Cell Fate</atitle><jtitle>Advanced functional materials</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>40</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fate in tissue engineering. Translating this into in vivo tissue repair in a clinical setting remains challenging, which requires precise temporal control of multi‐scale structural features. Using 4D printing technique, a multi‐responsive bilayer morphing membrane consisting of a shape memory polymer (SMP) layer and a hydrogel layer, is fabricated. The SMP layer is featured with responsive surface micro‐structures, which can switch the phase between proliferation and differentiation precisely, thus promoting the bone formation. The hydrogel layer endows the membrane with the ability to digitally regulate its 3D geometry, matching the specific macroscopic bone shape in clinical scenario. The authors’ in vivo experiments show that the 4D shape‐shifting membrane exhibits over 30% improvement in new bone formation in comparison to a reference membrane with static micro‐structure. More importantly, the 4D membrane can conformally wrap a bone defect model in a non‐invasive way and this strategy can be extended to repairs involving complex tissue defects.
Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fates. Taking it into a bone defect model, through DLP technology, a multi‐responsive bilayer morphing membrane with a shape memory polymer inside and programmable hydrogel outside, called a 4D printed membrane, provides the mechanism for macroscopic fitting for geometrically complex bone shapes and accelerated bone repair.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202103920</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7700-4697</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-10, Vol.31 (40), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2578159252 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 4D printing bilayer membrane bone healing Hydrogels Materials science Membranes Morphing Shape memory shape memory polymers stem cell fate Stem cells Substrates Tissue engineering |
title | 4D Printing of Multi‐Responsive Membrane for Accelerated In Vivo Bone Healing Via Remote Regulation of Stem Cell Fate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=4D%20Printing%20of%20Multi%E2%80%90Responsive%20Membrane%20for%20Accelerated%20In%20Vivo%20Bone%20Healing%20Via%20Remote%20Regulation%20of%20Stem%20Cell%20Fate&rft.jtitle=Advanced%20functional%20materials&rft.au=You,%20Dongqi&rft.date=2021-10-01&rft.volume=31&rft.issue=40&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202103920&rft_dat=%3Cproquest_cross%3E2578159252%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3170-191b0cabbd9b20a7f031c367521d6f065bde4b929fc24bb13c94d697ec44b5ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578159252&rft_id=info:pmid/&rfr_iscdi=true |