Loading…

4D Printing of Multi‐Responsive Membrane for Accelerated In Vivo Bone Healing Via Remote Regulation of Stem Cell Fate

Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fate in tissue engineering. Translating this into in vivo tissue repair in a clinical setting remains challenging, which requires precise temporal control of multi‐scale structural features. Using 4D print...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2021-10, Vol.31 (40), p.n/a
Main Authors: You, Dongqi, Chen, Guancong, Liu, Chao, Ye, Xin, Wang, Shaolong, Dong, Minyi, Sun, Mouyuan, He, Jianxiang, Yu, Xiaowen, Ye, Guanchen, Li, Qi, Wu, Junjie, Wu, Jingjun, Zhao, Qian, Xie, Tao, Yu, Mengfei, Wang, Huiming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3170-191b0cabbd9b20a7f031c367521d6f065bde4b929fc24bb13c94d697ec44b5ee3
cites cdi_FETCH-LOGICAL-c3170-191b0cabbd9b20a7f031c367521d6f065bde4b929fc24bb13c94d697ec44b5ee3
container_end_page n/a
container_issue 40
container_start_page
container_title Advanced functional materials
container_volume 31
creator You, Dongqi
Chen, Guancong
Liu, Chao
Ye, Xin
Wang, Shaolong
Dong, Minyi
Sun, Mouyuan
He, Jianxiang
Yu, Xiaowen
Ye, Guanchen
Li, Qi
Wu, Junjie
Wu, Jingjun
Zhao, Qian
Xie, Tao
Yu, Mengfei
Wang, Huiming
description Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fate in tissue engineering. Translating this into in vivo tissue repair in a clinical setting remains challenging, which requires precise temporal control of multi‐scale structural features. Using 4D printing technique, a multi‐responsive bilayer morphing membrane consisting of a shape memory polymer (SMP) layer and a hydrogel layer, is fabricated. The SMP layer is featured with responsive surface micro‐structures, which can switch the phase between proliferation and differentiation precisely, thus promoting the bone formation. The hydrogel layer endows the membrane with the ability to digitally regulate its 3D geometry, matching the specific macroscopic bone shape in clinical scenario. The authors’ in vivo experiments show that the 4D shape‐shifting membrane exhibits over 30% improvement in new bone formation in comparison to a reference membrane with static micro‐structure. More importantly, the 4D membrane can conformally wrap a bone defect model in a non‐invasive way and this strategy can be extended to repairs involving complex tissue defects. Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fates. Taking it into a bone defect model, through DLP technology, a multi‐responsive bilayer morphing membrane with a shape memory polymer inside and programmable hydrogel outside, called a 4D printed membrane, provides the mechanism for macroscopic fitting for geometrically complex bone shapes and accelerated bone repair.
doi_str_mv 10.1002/adfm.202103920
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578159252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578159252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-191b0cabbd9b20a7f031c367521d6f065bde4b929fc24bb13c94d697ec44b5ee3</originalsourceid><addsrcrecordid>eNqFkM1OAjEUhRujiYhuXTdxDfZnfugSQYQEokEl7iZt5w4p6UyxMyNh5yP4jD6JM8Hg0tU5yT3fuclB6JqSPiWE3co0y_uMMEq4YOQEdWhEox4nbHB69PTtHF2U5YYQGsc86KBdMMZP3hSVKdbYZXhR28p8f34tody6ojQfgBeQKy8LwJnzeKg1WPCyghTPCrwyHw7fueY4BWnbjpWReAm5q6CRdW1lZVzRNj9XkOMRWIsnDX2JzjJpS7j61S56ndy_jKa9-ePDbDSc9zSnMelRQRXRUqlUKEZknBFONY_ikNE0ykgUqhQCJZjINAuUolyLII1EDDoIVAjAu-jm0Lv17r2Gsko2rvZF8zJhYTygoWAha1L9Q0p7V5YesmTrTS79PqEkacdN2nGT47gNIA7AzljY_5NOhuPJ4o_9AYIofrE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578159252</pqid></control><display><type>article</type><title>4D Printing of Multi‐Responsive Membrane for Accelerated In Vivo Bone Healing Via Remote Regulation of Stem Cell Fate</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>You, Dongqi ; Chen, Guancong ; Liu, Chao ; Ye, Xin ; Wang, Shaolong ; Dong, Minyi ; Sun, Mouyuan ; He, Jianxiang ; Yu, Xiaowen ; Ye, Guanchen ; Li, Qi ; Wu, Junjie ; Wu, Jingjun ; Zhao, Qian ; Xie, Tao ; Yu, Mengfei ; Wang, Huiming</creator><creatorcontrib>You, Dongqi ; Chen, Guancong ; Liu, Chao ; Ye, Xin ; Wang, Shaolong ; Dong, Minyi ; Sun, Mouyuan ; He, Jianxiang ; Yu, Xiaowen ; Ye, Guanchen ; Li, Qi ; Wu, Junjie ; Wu, Jingjun ; Zhao, Qian ; Xie, Tao ; Yu, Mengfei ; Wang, Huiming</creatorcontrib><description>Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fate in tissue engineering. Translating this into in vivo tissue repair in a clinical setting remains challenging, which requires precise temporal control of multi‐scale structural features. Using 4D printing technique, a multi‐responsive bilayer morphing membrane consisting of a shape memory polymer (SMP) layer and a hydrogel layer, is fabricated. The SMP layer is featured with responsive surface micro‐structures, which can switch the phase between proliferation and differentiation precisely, thus promoting the bone formation. The hydrogel layer endows the membrane with the ability to digitally regulate its 3D geometry, matching the specific macroscopic bone shape in clinical scenario. The authors’ in vivo experiments show that the 4D shape‐shifting membrane exhibits over 30% improvement in new bone formation in comparison to a reference membrane with static micro‐structure. More importantly, the 4D membrane can conformally wrap a bone defect model in a non‐invasive way and this strategy can be extended to repairs involving complex tissue defects. Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fates. Taking it into a bone defect model, through DLP technology, a multi‐responsive bilayer morphing membrane with a shape memory polymer inside and programmable hydrogel outside, called a 4D printed membrane, provides the mechanism for macroscopic fitting for geometrically complex bone shapes and accelerated bone repair.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202103920</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>4D printing ; bilayer membrane ; bone healing ; Hydrogels ; Materials science ; Membranes ; Morphing ; Shape memory ; shape memory polymers ; stem cell fate ; Stem cells ; Substrates ; Tissue engineering</subject><ispartof>Advanced functional materials, 2021-10, Vol.31 (40), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-191b0cabbd9b20a7f031c367521d6f065bde4b929fc24bb13c94d697ec44b5ee3</citedby><cites>FETCH-LOGICAL-c3170-191b0cabbd9b20a7f031c367521d6f065bde4b929fc24bb13c94d697ec44b5ee3</cites><orcidid>0000-0002-7700-4697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>You, Dongqi</creatorcontrib><creatorcontrib>Chen, Guancong</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Ye, Xin</creatorcontrib><creatorcontrib>Wang, Shaolong</creatorcontrib><creatorcontrib>Dong, Minyi</creatorcontrib><creatorcontrib>Sun, Mouyuan</creatorcontrib><creatorcontrib>He, Jianxiang</creatorcontrib><creatorcontrib>Yu, Xiaowen</creatorcontrib><creatorcontrib>Ye, Guanchen</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Wu, Junjie</creatorcontrib><creatorcontrib>Wu, Jingjun</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Xie, Tao</creatorcontrib><creatorcontrib>Yu, Mengfei</creatorcontrib><creatorcontrib>Wang, Huiming</creatorcontrib><title>4D Printing of Multi‐Responsive Membrane for Accelerated In Vivo Bone Healing Via Remote Regulation of Stem Cell Fate</title><title>Advanced functional materials</title><description>Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fate in tissue engineering. Translating this into in vivo tissue repair in a clinical setting remains challenging, which requires precise temporal control of multi‐scale structural features. Using 4D printing technique, a multi‐responsive bilayer morphing membrane consisting of a shape memory polymer (SMP) layer and a hydrogel layer, is fabricated. The SMP layer is featured with responsive surface micro‐structures, which can switch the phase between proliferation and differentiation precisely, thus promoting the bone formation. The hydrogel layer endows the membrane with the ability to digitally regulate its 3D geometry, matching the specific macroscopic bone shape in clinical scenario. The authors’ in vivo experiments show that the 4D shape‐shifting membrane exhibits over 30% improvement in new bone formation in comparison to a reference membrane with static micro‐structure. More importantly, the 4D membrane can conformally wrap a bone defect model in a non‐invasive way and this strategy can be extended to repairs involving complex tissue defects. Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fates. Taking it into a bone defect model, through DLP technology, a multi‐responsive bilayer morphing membrane with a shape memory polymer inside and programmable hydrogel outside, called a 4D printed membrane, provides the mechanism for macroscopic fitting for geometrically complex bone shapes and accelerated bone repair.</description><subject>4D printing</subject><subject>bilayer membrane</subject><subject>bone healing</subject><subject>Hydrogels</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Morphing</subject><subject>Shape memory</subject><subject>shape memory polymers</subject><subject>stem cell fate</subject><subject>Stem cells</subject><subject>Substrates</subject><subject>Tissue engineering</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAjEUhRujiYhuXTdxDfZnfugSQYQEokEl7iZt5w4p6UyxMyNh5yP4jD6JM8Hg0tU5yT3fuclB6JqSPiWE3co0y_uMMEq4YOQEdWhEox4nbHB69PTtHF2U5YYQGsc86KBdMMZP3hSVKdbYZXhR28p8f34tody6ojQfgBeQKy8LwJnzeKg1WPCyghTPCrwyHw7fueY4BWnbjpWReAm5q6CRdW1lZVzRNj9XkOMRWIsnDX2JzjJpS7j61S56ndy_jKa9-ePDbDSc9zSnMelRQRXRUqlUKEZknBFONY_ikNE0ykgUqhQCJZjINAuUolyLII1EDDoIVAjAu-jm0Lv17r2Gsko2rvZF8zJhYTygoWAha1L9Q0p7V5YesmTrTS79PqEkacdN2nGT47gNIA7AzljY_5NOhuPJ4o_9AYIofrE</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>You, Dongqi</creator><creator>Chen, Guancong</creator><creator>Liu, Chao</creator><creator>Ye, Xin</creator><creator>Wang, Shaolong</creator><creator>Dong, Minyi</creator><creator>Sun, Mouyuan</creator><creator>He, Jianxiang</creator><creator>Yu, Xiaowen</creator><creator>Ye, Guanchen</creator><creator>Li, Qi</creator><creator>Wu, Junjie</creator><creator>Wu, Jingjun</creator><creator>Zhao, Qian</creator><creator>Xie, Tao</creator><creator>Yu, Mengfei</creator><creator>Wang, Huiming</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7700-4697</orcidid></search><sort><creationdate>20211001</creationdate><title>4D Printing of Multi‐Responsive Membrane for Accelerated In Vivo Bone Healing Via Remote Regulation of Stem Cell Fate</title><author>You, Dongqi ; Chen, Guancong ; Liu, Chao ; Ye, Xin ; Wang, Shaolong ; Dong, Minyi ; Sun, Mouyuan ; He, Jianxiang ; Yu, Xiaowen ; Ye, Guanchen ; Li, Qi ; Wu, Junjie ; Wu, Jingjun ; Zhao, Qian ; Xie, Tao ; Yu, Mengfei ; Wang, Huiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-191b0cabbd9b20a7f031c367521d6f065bde4b929fc24bb13c94d697ec44b5ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>4D printing</topic><topic>bilayer membrane</topic><topic>bone healing</topic><topic>Hydrogels</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Morphing</topic><topic>Shape memory</topic><topic>shape memory polymers</topic><topic>stem cell fate</topic><topic>Stem cells</topic><topic>Substrates</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Dongqi</creatorcontrib><creatorcontrib>Chen, Guancong</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Ye, Xin</creatorcontrib><creatorcontrib>Wang, Shaolong</creatorcontrib><creatorcontrib>Dong, Minyi</creatorcontrib><creatorcontrib>Sun, Mouyuan</creatorcontrib><creatorcontrib>He, Jianxiang</creatorcontrib><creatorcontrib>Yu, Xiaowen</creatorcontrib><creatorcontrib>Ye, Guanchen</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Wu, Junjie</creatorcontrib><creatorcontrib>Wu, Jingjun</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Xie, Tao</creatorcontrib><creatorcontrib>Yu, Mengfei</creatorcontrib><creatorcontrib>Wang, Huiming</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Dongqi</au><au>Chen, Guancong</au><au>Liu, Chao</au><au>Ye, Xin</au><au>Wang, Shaolong</au><au>Dong, Minyi</au><au>Sun, Mouyuan</au><au>He, Jianxiang</au><au>Yu, Xiaowen</au><au>Ye, Guanchen</au><au>Li, Qi</au><au>Wu, Junjie</au><au>Wu, Jingjun</au><au>Zhao, Qian</au><au>Xie, Tao</au><au>Yu, Mengfei</au><au>Wang, Huiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>4D Printing of Multi‐Responsive Membrane for Accelerated In Vivo Bone Healing Via Remote Regulation of Stem Cell Fate</atitle><jtitle>Advanced functional materials</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>40</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fate in tissue engineering. Translating this into in vivo tissue repair in a clinical setting remains challenging, which requires precise temporal control of multi‐scale structural features. Using 4D printing technique, a multi‐responsive bilayer morphing membrane consisting of a shape memory polymer (SMP) layer and a hydrogel layer, is fabricated. The SMP layer is featured with responsive surface micro‐structures, which can switch the phase between proliferation and differentiation precisely, thus promoting the bone formation. The hydrogel layer endows the membrane with the ability to digitally regulate its 3D geometry, matching the specific macroscopic bone shape in clinical scenario. The authors’ in vivo experiments show that the 4D shape‐shifting membrane exhibits over 30% improvement in new bone formation in comparison to a reference membrane with static micro‐structure. More importantly, the 4D membrane can conformally wrap a bone defect model in a non‐invasive way and this strategy can be extended to repairs involving complex tissue defects. Dynamic regulation of substrate micro‐structures is an effective strategy to control stem cell fates. Taking it into a bone defect model, through DLP technology, a multi‐responsive bilayer morphing membrane with a shape memory polymer inside and programmable hydrogel outside, called a 4D printed membrane, provides the mechanism for macroscopic fitting for geometrically complex bone shapes and accelerated bone repair.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202103920</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7700-4697</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-10, Vol.31 (40), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2578159252
source Wiley-Blackwell Read & Publish Collection
subjects 4D printing
bilayer membrane
bone healing
Hydrogels
Materials science
Membranes
Morphing
Shape memory
shape memory polymers
stem cell fate
Stem cells
Substrates
Tissue engineering
title 4D Printing of Multi‐Responsive Membrane for Accelerated In Vivo Bone Healing Via Remote Regulation of Stem Cell Fate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=4D%20Printing%20of%20Multi%E2%80%90Responsive%20Membrane%20for%20Accelerated%20In%20Vivo%20Bone%20Healing%20Via%20Remote%20Regulation%20of%20Stem%20Cell%20Fate&rft.jtitle=Advanced%20functional%20materials&rft.au=You,%20Dongqi&rft.date=2021-10-01&rft.volume=31&rft.issue=40&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202103920&rft_dat=%3Cproquest_cross%3E2578159252%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3170-191b0cabbd9b20a7f031c367521d6f065bde4b929fc24bb13c94d697ec44b5ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578159252&rft_id=info:pmid/&rfr_iscdi=true