Loading…

Computation-Efficient Online Optimal Tracking Method for Permanent Magnet Synchronous Machine Drives for MTPA and Flux-Weakening Operations

In this article, a novel online optimal tracking method is proposed for permanent magnet synchronous machine drives for maximum torque per ampere (MTPA) and flux-weakening (FW) operations. The conventional model-based optimal tracking methods impose heavy computational burden, because the optimality...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of emerging and selected topics in power electronics 2021-10, Vol.9 (5), p.5341-5353
Main Authors: Xia, Zekun, Filho, Silvio Rotilli, Xiao, Dianxun, Fang, Gaoliang, Sun, Yingguang, Wiseman, Jason, Emadi, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-9045f5f68a31b6d00afc32b42278d5b5930de09c2eac7ea3a06a4b6b721e2f383
cites cdi_FETCH-LOGICAL-c297t-9045f5f68a31b6d00afc32b42278d5b5930de09c2eac7ea3a06a4b6b721e2f383
container_end_page 5353
container_issue 5
container_start_page 5341
container_title IEEE journal of emerging and selected topics in power electronics
container_volume 9
creator Xia, Zekun
Filho, Silvio Rotilli
Xiao, Dianxun
Fang, Gaoliang
Sun, Yingguang
Wiseman, Jason
Emadi, Ali
description In this article, a novel online optimal tracking method is proposed for permanent magnet synchronous machine drives for maximum torque per ampere (MTPA) and flux-weakening (FW) operations. The conventional model-based optimal tracking methods impose heavy computational burden, because the optimality criteria are usually used along with related boundaries to develop different optimization problems for different operation regions. Compared with the conventional methods, the proposed method reduces the mathematical complexity of the optimization problem and improves the computational efficiency in real-time implementation. Only one optimization problem is solved in both MTPA and FW regions, while the enhanced projection operations are developed to ensure the current references are within the voltage and current constraints. Magnetic saturation, phase winding resistance, nonlinearity of the inverter, and dc-link voltage variation are all taken into consideration. The feasibility of the proposed online optimal tracking method has been validated on an interior permanent magnet synchronous machine (IPMSM) test bench with an off-the-shelf motor control unit. The execution time and convergence rate of the proposed method have also been evaluated with benchmark conventional methods and presented in this article.
doi_str_mv 10.1109/JESTPE.2020.3039205
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578240753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9264239</ieee_id><sourcerecordid>2578240753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-9045f5f68a31b6d00afc32b42278d5b5930de09c2eac7ea3a06a4b6b721e2f383</originalsourceid><addsrcrecordid>eNo9kFtrwjAUx8vYYLL5CXwJ7LkuTZqmeRSnuzBR0LHHkqYnWi9Jl7Rj-wz70mtVPC_ncPhf4BcEgwgPowiLx7fJcrWYDAkmeEgxFQSzq6BHoiQNE56y68vN-W3Q936L20kJEzztBX9je6iaWtalNeFE61KVYGo0N_vSAJpXdXmQe7RyUu1Ks0YzqDe2QNo6tAB3kKYTz-TaQI2Wv0ZtnDW28e1LbbqAJ1d-gz_qZ6vFCElToOm--Qk_Qe7AdJHzCtyx3t8HN1ruPfTP-y74mE5W45fwff78Oh69h4oIXocCx0wznaSSRnlSYCy1oiSPCeFpwXImKC4AC0VAKg6SSpzIOE9yTiIgmqb0Lng45VbOfjXg62xrG2fayowwnpIYc0ZbFT2plLPeO9BZ5VoY7jeLcNaBz07gsw58dgbfugYnVwkAF4cgSUyooP-pRoEW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578240753</pqid></control><display><type>article</type><title>Computation-Efficient Online Optimal Tracking Method for Permanent Magnet Synchronous Machine Drives for MTPA and Flux-Weakening Operations</title><source>IEEE Xplore (Online service)</source><creator>Xia, Zekun ; Filho, Silvio Rotilli ; Xiao, Dianxun ; Fang, Gaoliang ; Sun, Yingguang ; Wiseman, Jason ; Emadi, Ali</creator><creatorcontrib>Xia, Zekun ; Filho, Silvio Rotilli ; Xiao, Dianxun ; Fang, Gaoliang ; Sun, Yingguang ; Wiseman, Jason ; Emadi, Ali</creatorcontrib><description>In this article, a novel online optimal tracking method is proposed for permanent magnet synchronous machine drives for maximum torque per ampere (MTPA) and flux-weakening (FW) operations. The conventional model-based optimal tracking methods impose heavy computational burden, because the optimality criteria are usually used along with related boundaries to develop different optimization problems for different operation regions. Compared with the conventional methods, the proposed method reduces the mathematical complexity of the optimization problem and improves the computational efficiency in real-time implementation. Only one optimization problem is solved in both MTPA and FW regions, while the enhanced projection operations are developed to ensure the current references are within the voltage and current constraints. Magnetic saturation, phase winding resistance, nonlinearity of the inverter, and dc-link voltage variation are all taken into consideration. The feasibility of the proposed online optimal tracking method has been validated on an interior permanent magnet synchronous machine (IPMSM) test bench with an off-the-shelf motor control unit. The execution time and convergence rate of the proposed method have also been evaluated with benchmark conventional methods and presented in this article.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2020.3039205</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computation-efficient algorithm ; Computational efficiency ; Computational modeling ; Convergence ; Electric potential ; gradient descent (GD) algorithm ; inverter nonlinearity ; Magnetic saturation ; Mathematical model ; maximum torque per ampere (MTPA) ; online optimal tracking ; Optimality criteria ; Optimization ; permanent magnet synchronous machine (PMSM) ; Permanent magnets ; projection operation ; Resistance ; Stator windings ; Synchronous machines ; Torque ; Tracking ; Trajectory ; Voltage</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2021-10, Vol.9 (5), p.5341-5353</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-9045f5f68a31b6d00afc32b42278d5b5930de09c2eac7ea3a06a4b6b721e2f383</citedby><cites>FETCH-LOGICAL-c297t-9045f5f68a31b6d00afc32b42278d5b5930de09c2eac7ea3a06a4b6b721e2f383</cites><orcidid>0000-0002-3746-0698 ; 0000-0002-9302-7610 ; 0000-0002-0676-1455 ; 0000-0003-1157-9209 ; 0000-0001-6430-6461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9264239$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Xia, Zekun</creatorcontrib><creatorcontrib>Filho, Silvio Rotilli</creatorcontrib><creatorcontrib>Xiao, Dianxun</creatorcontrib><creatorcontrib>Fang, Gaoliang</creatorcontrib><creatorcontrib>Sun, Yingguang</creatorcontrib><creatorcontrib>Wiseman, Jason</creatorcontrib><creatorcontrib>Emadi, Ali</creatorcontrib><title>Computation-Efficient Online Optimal Tracking Method for Permanent Magnet Synchronous Machine Drives for MTPA and Flux-Weakening Operations</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>In this article, a novel online optimal tracking method is proposed for permanent magnet synchronous machine drives for maximum torque per ampere (MTPA) and flux-weakening (FW) operations. The conventional model-based optimal tracking methods impose heavy computational burden, because the optimality criteria are usually used along with related boundaries to develop different optimization problems for different operation regions. Compared with the conventional methods, the proposed method reduces the mathematical complexity of the optimization problem and improves the computational efficiency in real-time implementation. Only one optimization problem is solved in both MTPA and FW regions, while the enhanced projection operations are developed to ensure the current references are within the voltage and current constraints. Magnetic saturation, phase winding resistance, nonlinearity of the inverter, and dc-link voltage variation are all taken into consideration. The feasibility of the proposed online optimal tracking method has been validated on an interior permanent magnet synchronous machine (IPMSM) test bench with an off-the-shelf motor control unit. The execution time and convergence rate of the proposed method have also been evaluated with benchmark conventional methods and presented in this article.</description><subject>Computation-efficient algorithm</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>Electric potential</subject><subject>gradient descent (GD) algorithm</subject><subject>inverter nonlinearity</subject><subject>Magnetic saturation</subject><subject>Mathematical model</subject><subject>maximum torque per ampere (MTPA)</subject><subject>online optimal tracking</subject><subject>Optimality criteria</subject><subject>Optimization</subject><subject>permanent magnet synchronous machine (PMSM)</subject><subject>Permanent magnets</subject><subject>projection operation</subject><subject>Resistance</subject><subject>Stator windings</subject><subject>Synchronous machines</subject><subject>Torque</subject><subject>Tracking</subject><subject>Trajectory</subject><subject>Voltage</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kFtrwjAUx8vYYLL5CXwJ7LkuTZqmeRSnuzBR0LHHkqYnWi9Jl7Rj-wz70mtVPC_ncPhf4BcEgwgPowiLx7fJcrWYDAkmeEgxFQSzq6BHoiQNE56y68vN-W3Q936L20kJEzztBX9je6iaWtalNeFE61KVYGo0N_vSAJpXdXmQe7RyUu1Ks0YzqDe2QNo6tAB3kKYTz-TaQI2Wv0ZtnDW28e1LbbqAJ1d-gz_qZ6vFCElToOm--Qk_Qe7AdJHzCtyx3t8HN1ruPfTP-y74mE5W45fwff78Oh69h4oIXocCx0wznaSSRnlSYCy1oiSPCeFpwXImKC4AC0VAKg6SSpzIOE9yTiIgmqb0Lng45VbOfjXg62xrG2fayowwnpIYc0ZbFT2plLPeO9BZ5VoY7jeLcNaBz07gsw58dgbfugYnVwkAF4cgSUyooP-pRoEW</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Xia, Zekun</creator><creator>Filho, Silvio Rotilli</creator><creator>Xiao, Dianxun</creator><creator>Fang, Gaoliang</creator><creator>Sun, Yingguang</creator><creator>Wiseman, Jason</creator><creator>Emadi, Ali</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3746-0698</orcidid><orcidid>https://orcid.org/0000-0002-9302-7610</orcidid><orcidid>https://orcid.org/0000-0002-0676-1455</orcidid><orcidid>https://orcid.org/0000-0003-1157-9209</orcidid><orcidid>https://orcid.org/0000-0001-6430-6461</orcidid></search><sort><creationdate>20211001</creationdate><title>Computation-Efficient Online Optimal Tracking Method for Permanent Magnet Synchronous Machine Drives for MTPA and Flux-Weakening Operations</title><author>Xia, Zekun ; Filho, Silvio Rotilli ; Xiao, Dianxun ; Fang, Gaoliang ; Sun, Yingguang ; Wiseman, Jason ; Emadi, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-9045f5f68a31b6d00afc32b42278d5b5930de09c2eac7ea3a06a4b6b721e2f383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computation-efficient algorithm</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>Electric potential</topic><topic>gradient descent (GD) algorithm</topic><topic>inverter nonlinearity</topic><topic>Magnetic saturation</topic><topic>Mathematical model</topic><topic>maximum torque per ampere (MTPA)</topic><topic>online optimal tracking</topic><topic>Optimality criteria</topic><topic>Optimization</topic><topic>permanent magnet synchronous machine (PMSM)</topic><topic>Permanent magnets</topic><topic>projection operation</topic><topic>Resistance</topic><topic>Stator windings</topic><topic>Synchronous machines</topic><topic>Torque</topic><topic>Tracking</topic><topic>Trajectory</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Zekun</creatorcontrib><creatorcontrib>Filho, Silvio Rotilli</creatorcontrib><creatorcontrib>Xiao, Dianxun</creatorcontrib><creatorcontrib>Fang, Gaoliang</creatorcontrib><creatorcontrib>Sun, Yingguang</creatorcontrib><creatorcontrib>Wiseman, Jason</creatorcontrib><creatorcontrib>Emadi, Ali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Zekun</au><au>Filho, Silvio Rotilli</au><au>Xiao, Dianxun</au><au>Fang, Gaoliang</au><au>Sun, Yingguang</au><au>Wiseman, Jason</au><au>Emadi, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation-Efficient Online Optimal Tracking Method for Permanent Magnet Synchronous Machine Drives for MTPA and Flux-Weakening Operations</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>9</volume><issue>5</issue><spage>5341</spage><epage>5353</epage><pages>5341-5353</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>In this article, a novel online optimal tracking method is proposed for permanent magnet synchronous machine drives for maximum torque per ampere (MTPA) and flux-weakening (FW) operations. The conventional model-based optimal tracking methods impose heavy computational burden, because the optimality criteria are usually used along with related boundaries to develop different optimization problems for different operation regions. Compared with the conventional methods, the proposed method reduces the mathematical complexity of the optimization problem and improves the computational efficiency in real-time implementation. Only one optimization problem is solved in both MTPA and FW regions, while the enhanced projection operations are developed to ensure the current references are within the voltage and current constraints. Magnetic saturation, phase winding resistance, nonlinearity of the inverter, and dc-link voltage variation are all taken into consideration. The feasibility of the proposed online optimal tracking method has been validated on an interior permanent magnet synchronous machine (IPMSM) test bench with an off-the-shelf motor control unit. The execution time and convergence rate of the proposed method have also been evaluated with benchmark conventional methods and presented in this article.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JESTPE.2020.3039205</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3746-0698</orcidid><orcidid>https://orcid.org/0000-0002-9302-7610</orcidid><orcidid>https://orcid.org/0000-0002-0676-1455</orcidid><orcidid>https://orcid.org/0000-0003-1157-9209</orcidid><orcidid>https://orcid.org/0000-0001-6430-6461</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-6777
ispartof IEEE journal of emerging and selected topics in power electronics, 2021-10, Vol.9 (5), p.5341-5353
issn 2168-6777
2168-6785
language eng
recordid cdi_proquest_journals_2578240753
source IEEE Xplore (Online service)
subjects Computation-efficient algorithm
Computational efficiency
Computational modeling
Convergence
Electric potential
gradient descent (GD) algorithm
inverter nonlinearity
Magnetic saturation
Mathematical model
maximum torque per ampere (MTPA)
online optimal tracking
Optimality criteria
Optimization
permanent magnet synchronous machine (PMSM)
Permanent magnets
projection operation
Resistance
Stator windings
Synchronous machines
Torque
Tracking
Trajectory
Voltage
title Computation-Efficient Online Optimal Tracking Method for Permanent Magnet Synchronous Machine Drives for MTPA and Flux-Weakening Operations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation-Efficient%20Online%20Optimal%20Tracking%20Method%20for%20Permanent%20Magnet%20Synchronous%20Machine%20Drives%20for%20MTPA%20and%20Flux-Weakening%20Operations&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Xia,%20Zekun&rft.date=2021-10-01&rft.volume=9&rft.issue=5&rft.spage=5341&rft.epage=5353&rft.pages=5341-5353&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2020.3039205&rft_dat=%3Cproquest_cross%3E2578240753%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-9045f5f68a31b6d00afc32b42278d5b5930de09c2eac7ea3a06a4b6b721e2f383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578240753&rft_id=info:pmid/&rft_ieee_id=9264239&rfr_iscdi=true