Loading…

Input Voltage Feedforward Control Technique for DC/DC Converters to Avoid Instability in DC Grids

DC grids are becoming more popular due to the penetration of renewables and storage systems that work at dc. In dc grids, most of the loads are connected through dc/dc converters, when their power does not change they behave as constant power loads (CPLs). It is known that CPLs have a small-signal n...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of emerging and selected topics in power electronics 2021-10, Vol.9 (5), p.6099-6112
Main Authors: Ibanez, Federico Martin, Martin, Fernando, Eletu, Joshua, Echeverria, Jose Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:DC grids are becoming more popular due to the penetration of renewables and storage systems that work at dc. In dc grids, most of the loads are connected through dc/dc converters, when their power does not change they behave as constant power loads (CPLs). It is known that CPLs have a small-signal negative resistance which can produce instabilities in dc grids. Methods to mitigate instabilities include damping (or lossy) elements in the input port of the dc/dc converters, and parallel converters to mitigate potential oscillations. In this article, a new feedforward technique from the input port is included in the control signal to modify the load-end dc/dc converter input admittance. Thus, CPL behavior is only canceled in the potential unstable frequency range with a small impact on the input-to-output voltage rejection. This article explains in a comprehensive way, how to cancel the negative impedance using a simple feedforward technique. The proposal mitigates oscillations in the dc grid without increasing the complexity of the system or adding dissipative elements. Simulations in complex dc grids with several devices validate the results. Finally, experimental results in a 2000-W test bench verify the proposal.
ISSN:2168-6777
2168-6785
DOI:10.1109/JESTPE.2021.3058850