Loading…
Quantum Information Masking of Hadamard Sets
We study quantum information masking of arbitrary dimensional states. Given a set of fixed reducing pure states, we study the linear combinations of them, such that they all have the same marginal states with the given ones. We define the so called Hadamard set of quantum states whose Gram-Schmidt m...
Saved in:
Published in: | arXiv.org 2021-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bao-Zhi Sun Shao-Ming, Fei Li-Jost, Xianqing |
description | We study quantum information masking of arbitrary dimensional states. Given a set of fixed reducing pure states, we study the linear combinations of them, such that they all have the same marginal states with the given ones. We define the so called Hadamard set of quantum states whose Gram-Schmidt matrix can be diagonalized by Hadamard unitary matrices. We show that any Hadamard set can be deterministically masked by a unitary operation. We analyze the states which can be masked together with the given Hadamard set using the result about the linear combinations of fixed reducing states. Detailed examples are given to illustrate our results. |
doi_str_mv | 10.48550/arxiv.2109.14819 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2578272281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578272281</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-7966a6d3e9e2dc629a24f4bb0e26fd52d900b782b7bb6608e93df00a4a5779a03</originalsourceid><addsrcrecordid>eNotjU1LAzEUAIMgWGp_QG8LXt315eX7KEVtoSLS3suLSWSru9HNrvjzLdTTnGaGsSWHRlql4I6G3_anQQ6u4dJyd8FmKASvrUS8YotSjgCA2qBSYsZuXyfqx6mrNn3KQ0djm_vqmcpH279XOVVrCtTREKpdHMs1u0z0WeLin3O2f3zYr9b19uVps7rf1qSQ18ZpTTqI6CKGN42OUCbpPUTUKSgMDsAbi954rzXY6ERIACRJGeMIxJzdnLNfQ_6eYhkPxzwN_el4QHUSDaLl4g-qX0Lt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578272281</pqid></control><display><type>article</type><title>Quantum Information Masking of Hadamard Sets</title><source>Publicly Available Content (ProQuest)</source><creator>Bao-Zhi Sun ; Shao-Ming, Fei ; Li-Jost, Xianqing</creator><creatorcontrib>Bao-Zhi Sun ; Shao-Ming, Fei ; Li-Jost, Xianqing</creatorcontrib><description>We study quantum information masking of arbitrary dimensional states. Given a set of fixed reducing pure states, we study the linear combinations of them, such that they all have the same marginal states with the given ones. We define the so called Hadamard set of quantum states whose Gram-Schmidt matrix can be diagonalized by Hadamard unitary matrices. We show that any Hadamard set can be deterministically masked by a unitary operation. We analyze the states which can be masked together with the given Hadamard set using the result about the linear combinations of fixed reducing states. Detailed examples are given to illustrate our results.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2109.14819</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Masking ; Quantum phenomena</subject><ispartof>arXiv.org, 2021-09</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2578272281?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Bao-Zhi Sun</creatorcontrib><creatorcontrib>Shao-Ming, Fei</creatorcontrib><creatorcontrib>Li-Jost, Xianqing</creatorcontrib><title>Quantum Information Masking of Hadamard Sets</title><title>arXiv.org</title><description>We study quantum information masking of arbitrary dimensional states. Given a set of fixed reducing pure states, we study the linear combinations of them, such that they all have the same marginal states with the given ones. We define the so called Hadamard set of quantum states whose Gram-Schmidt matrix can be diagonalized by Hadamard unitary matrices. We show that any Hadamard set can be deterministically masked by a unitary operation. We analyze the states which can be masked together with the given Hadamard set using the result about the linear combinations of fixed reducing states. Detailed examples are given to illustrate our results.</description><subject>Masking</subject><subject>Quantum phenomena</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LAzEUAIMgWGp_QG8LXt315eX7KEVtoSLS3suLSWSru9HNrvjzLdTTnGaGsSWHRlql4I6G3_anQQ6u4dJyd8FmKASvrUS8YotSjgCA2qBSYsZuXyfqx6mrNn3KQ0djm_vqmcpH279XOVVrCtTREKpdHMs1u0z0WeLin3O2f3zYr9b19uVps7rf1qSQ18ZpTTqI6CKGN42OUCbpPUTUKSgMDsAbi954rzXY6ERIACRJGeMIxJzdnLNfQ_6eYhkPxzwN_el4QHUSDaLl4g-qX0Lt</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Bao-Zhi Sun</creator><creator>Shao-Ming, Fei</creator><creator>Li-Jost, Xianqing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210930</creationdate><title>Quantum Information Masking of Hadamard Sets</title><author>Bao-Zhi Sun ; Shao-Ming, Fei ; Li-Jost, Xianqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-7966a6d3e9e2dc629a24f4bb0e26fd52d900b782b7bb6608e93df00a4a5779a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Masking</topic><topic>Quantum phenomena</topic><toplevel>online_resources</toplevel><creatorcontrib>Bao-Zhi Sun</creatorcontrib><creatorcontrib>Shao-Ming, Fei</creatorcontrib><creatorcontrib>Li-Jost, Xianqing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao-Zhi Sun</au><au>Shao-Ming, Fei</au><au>Li-Jost, Xianqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Information Masking of Hadamard Sets</atitle><jtitle>arXiv.org</jtitle><date>2021-09-30</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We study quantum information masking of arbitrary dimensional states. Given a set of fixed reducing pure states, we study the linear combinations of them, such that they all have the same marginal states with the given ones. We define the so called Hadamard set of quantum states whose Gram-Schmidt matrix can be diagonalized by Hadamard unitary matrices. We show that any Hadamard set can be deterministically masked by a unitary operation. We analyze the states which can be masked together with the given Hadamard set using the result about the linear combinations of fixed reducing states. Detailed examples are given to illustrate our results.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2109.14819</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2578272281 |
source | Publicly Available Content (ProQuest) |
subjects | Masking Quantum phenomena |
title | Quantum Information Masking of Hadamard Sets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Information%20Masking%20of%20Hadamard%20Sets&rft.jtitle=arXiv.org&rft.au=Bao-Zhi%20Sun&rft.date=2021-09-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2109.14819&rft_dat=%3Cproquest%3E2578272281%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-7966a6d3e9e2dc629a24f4bb0e26fd52d900b782b7bb6608e93df00a4a5779a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578272281&rft_id=info:pmid/&rfr_iscdi=true |