Loading…

Runtime Analyses of the Population-Based Univariate Estimation of Distribution Algorithms on LeadingOnes

We perform rigorous runtime analyses for the univariate marginal distribution algorithm ( UMDA ) and the population-based incremental learning ( PBIL ) Algorithm on LeadingOnes . For the UMDA , the currently known expected runtime on the function is O n λ log λ + n 2 under an offspring population si...

Full description

Saved in:
Bibliographic Details
Published in:Algorithmica 2021-10, Vol.83 (10), p.3238-3280
Main Authors: Lehre, Per Kristian, Nguyen, Phan Trung Hai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-263a8abfb9b37c536700cbfe02e26d3ac34deed73b05ec03ccd5c7ae22ff5dec3
cites cdi_FETCH-LOGICAL-c363t-263a8abfb9b37c536700cbfe02e26d3ac34deed73b05ec03ccd5c7ae22ff5dec3
container_end_page 3280
container_issue 10
container_start_page 3238
container_title Algorithmica
container_volume 83
creator Lehre, Per Kristian
Nguyen, Phan Trung Hai
description We perform rigorous runtime analyses for the univariate marginal distribution algorithm ( UMDA ) and the population-based incremental learning ( PBIL ) Algorithm on LeadingOnes . For the UMDA , the currently known expected runtime on the function is O n λ log λ + n 2 under an offspring population size λ = Ω ( log n ) and a parent population size μ ≤ λ / ( e ( 1 + δ ) ) for any constant δ > 0 (Dang and Lehre, GECCO 2015). There is no lower bound on the expected runtime under the same parameter settings. It also remains unknown whether the algorithm can still optimise the LeadingOnes function within a polynomial runtime when μ ≥ λ / ( e ( 1 + δ ) ) . In case of the PBIL , an expected runtime of O ( n 2 + c ) holds for some constant c ∈ ( 0 , 1 ) (Wu, Kolonko and Möhring, IEEE TEVC 2017). Despite being a generalisation of the UMDA , this upper bound is significantly asymptotically looser than the upper bound of O n 2 of the UMDA for λ = Ω ( log n ) ∩ O n / log n . Furthermore, the required population size is very large, i.e., λ = Ω ( n 1 + c ) . Our contributions are then threefold: (1) we show that the UMDA with μ = Ω ( log n ) and λ ≤ μ e 1 - ε / ( 1 + δ ) for any constants ε ∈ ( 0 , 1 ) and 0 < δ ≤ e 1 - ε - 1 requires an expected runtime of e Ω ( μ ) on LeadingOnes , (2) an upper bound of O n λ log λ + n 2 is shown for the PBIL , which improves the current bound O n 2 + c by a significant factor of Θ ( n c ) , and (3) we for the first time consider the two algorithms on the LeadingOnes function in a noisy environment and obtain an expected runtime of O n 2 for appropriate parameter settings. Our results emphasise that despite the independence assumption in the probabilistic models, the UMDA and the PBIL with fine-tuned parameter choices can still cope very well with variable interactions.
doi_str_mv 10.1007/s00453-021-00862-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2578501201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578501201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-263a8abfb9b37c536700cbfe02e26d3ac34deed73b05ec03ccd5c7ae22ff5dec3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuC19GTpGm6yznnBwwm4q5Dmp5uHV07k1TYvzdbBe-8Coc87wvvQ8gtg3sGoB48QCoFBc4oQJ5xKs7IiKWCU5ApOycjYCqnacbUJbnyfgvAuJpkI7L56NtQ7zCZtqY5ePRJVyVhg8l7t-8bE-qupY_GY5ms2vrbuNoETOY-Rk5_R_qp9sHVRX-6p826c3XY7GJRmyzQlHW7Xrbor8lFZRqPN7_vmKye55-zV7pYvrzNpgtqRSYC5ZkwuSmqYlIIZaXIFIAtKgSOPCuFsSItEUslCpBoQVhbSqsMcl5VskQrxuRu6N277qtHH_S2610c5zWXKpdxOLBI8YGyrvPeYaX3Lk5yB81AH43qwaiORvXJqBYxJIaQj3C7RvdX_U_qB1y6e4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578501201</pqid></control><display><type>article</type><title>Runtime Analyses of the Population-Based Univariate Estimation of Distribution Algorithms on LeadingOnes</title><source>Springer Nature</source><creator>Lehre, Per Kristian ; Nguyen, Phan Trung Hai</creator><creatorcontrib>Lehre, Per Kristian ; Nguyen, Phan Trung Hai</creatorcontrib><description>We perform rigorous runtime analyses for the univariate marginal distribution algorithm ( UMDA ) and the population-based incremental learning ( PBIL ) Algorithm on LeadingOnes . For the UMDA , the currently known expected runtime on the function is O n λ log λ + n 2 under an offspring population size λ = Ω ( log n ) and a parent population size μ ≤ λ / ( e ( 1 + δ ) ) for any constant δ &gt; 0 (Dang and Lehre, GECCO 2015). There is no lower bound on the expected runtime under the same parameter settings. It also remains unknown whether the algorithm can still optimise the LeadingOnes function within a polynomial runtime when μ ≥ λ / ( e ( 1 + δ ) ) . In case of the PBIL , an expected runtime of O ( n 2 + c ) holds for some constant c ∈ ( 0 , 1 ) (Wu, Kolonko and Möhring, IEEE TEVC 2017). Despite being a generalisation of the UMDA , this upper bound is significantly asymptotically looser than the upper bound of O n 2 of the UMDA for λ = Ω ( log n ) ∩ O n / log n . Furthermore, the required population size is very large, i.e., λ = Ω ( n 1 + c ) . Our contributions are then threefold: (1) we show that the UMDA with μ = Ω ( log n ) and λ ≤ μ e 1 - ε / ( 1 + δ ) for any constants ε ∈ ( 0 , 1 ) and 0 &lt; δ ≤ e 1 - ε - 1 requires an expected runtime of e Ω ( μ ) on LeadingOnes , (2) an upper bound of O n λ log λ + n 2 is shown for the PBIL , which improves the current bound O n 2 + c by a significant factor of Θ ( n c ) , and (3) we for the first time consider the two algorithms on the LeadingOnes function in a noisy environment and obtain an expected runtime of O n 2 for appropriate parameter settings. Our results emphasise that despite the independence assumption in the probabilistic models, the UMDA and the PBIL with fine-tuned parameter choices can still cope very well with variable interactions.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-021-00862-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>2019 ; Algorithm Analysis and Problem Complexity ; Algorithms ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Lower bounds ; Machine learning ; Mathematics of Computing ; Parameters ; Polynomials ; Population ; Probabilistic models ; Special Issue on Genetic and Evolutionary Computation ; Theory of Computation ; Upper bounds</subject><ispartof>Algorithmica, 2021-10, Vol.83 (10), p.3238-3280</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-263a8abfb9b37c536700cbfe02e26d3ac34deed73b05ec03ccd5c7ae22ff5dec3</citedby><cites>FETCH-LOGICAL-c363t-263a8abfb9b37c536700cbfe02e26d3ac34deed73b05ec03ccd5c7ae22ff5dec3</cites><orcidid>0000-0003-0783-2224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Lehre, Per Kristian</creatorcontrib><creatorcontrib>Nguyen, Phan Trung Hai</creatorcontrib><title>Runtime Analyses of the Population-Based Univariate Estimation of Distribution Algorithms on LeadingOnes</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>We perform rigorous runtime analyses for the univariate marginal distribution algorithm ( UMDA ) and the population-based incremental learning ( PBIL ) Algorithm on LeadingOnes . For the UMDA , the currently known expected runtime on the function is O n λ log λ + n 2 under an offspring population size λ = Ω ( log n ) and a parent population size μ ≤ λ / ( e ( 1 + δ ) ) for any constant δ &gt; 0 (Dang and Lehre, GECCO 2015). There is no lower bound on the expected runtime under the same parameter settings. It also remains unknown whether the algorithm can still optimise the LeadingOnes function within a polynomial runtime when μ ≥ λ / ( e ( 1 + δ ) ) . In case of the PBIL , an expected runtime of O ( n 2 + c ) holds for some constant c ∈ ( 0 , 1 ) (Wu, Kolonko and Möhring, IEEE TEVC 2017). Despite being a generalisation of the UMDA , this upper bound is significantly asymptotically looser than the upper bound of O n 2 of the UMDA for λ = Ω ( log n ) ∩ O n / log n . Furthermore, the required population size is very large, i.e., λ = Ω ( n 1 + c ) . Our contributions are then threefold: (1) we show that the UMDA with μ = Ω ( log n ) and λ ≤ μ e 1 - ε / ( 1 + δ ) for any constants ε ∈ ( 0 , 1 ) and 0 &lt; δ ≤ e 1 - ε - 1 requires an expected runtime of e Ω ( μ ) on LeadingOnes , (2) an upper bound of O n λ log λ + n 2 is shown for the PBIL , which improves the current bound O n 2 + c by a significant factor of Θ ( n c ) , and (3) we for the first time consider the two algorithms on the LeadingOnes function in a noisy environment and obtain an expected runtime of O n 2 for appropriate parameter settings. Our results emphasise that despite the independence assumption in the probabilistic models, the UMDA and the PBIL with fine-tuned parameter choices can still cope very well with variable interactions.</description><subject>2019</subject><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Lower bounds</subject><subject>Machine learning</subject><subject>Mathematics of Computing</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Population</subject><subject>Probabilistic models</subject><subject>Special Issue on Genetic and Evolutionary Computation</subject><subject>Theory of Computation</subject><subject>Upper bounds</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wKuC19GTpGm6yznnBwwm4q5Dmp5uHV07k1TYvzdbBe-8Coc87wvvQ8gtg3sGoB48QCoFBc4oQJ5xKs7IiKWCU5ApOycjYCqnacbUJbnyfgvAuJpkI7L56NtQ7zCZtqY5ePRJVyVhg8l7t-8bE-qupY_GY5ms2vrbuNoETOY-Rk5_R_qp9sHVRX-6p826c3XY7GJRmyzQlHW7Xrbor8lFZRqPN7_vmKye55-zV7pYvrzNpgtqRSYC5ZkwuSmqYlIIZaXIFIAtKgSOPCuFsSItEUslCpBoQVhbSqsMcl5VskQrxuRu6N277qtHH_S2610c5zWXKpdxOLBI8YGyrvPeYaX3Lk5yB81AH43qwaiORvXJqBYxJIaQj3C7RvdX_U_qB1y6e4g</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Lehre, Per Kristian</creator><creator>Nguyen, Phan Trung Hai</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0783-2224</orcidid></search><sort><creationdate>20211001</creationdate><title>Runtime Analyses of the Population-Based Univariate Estimation of Distribution Algorithms on LeadingOnes</title><author>Lehre, Per Kristian ; Nguyen, Phan Trung Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-263a8abfb9b37c536700cbfe02e26d3ac34deed73b05ec03ccd5c7ae22ff5dec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2019</topic><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Lower bounds</topic><topic>Machine learning</topic><topic>Mathematics of Computing</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Population</topic><topic>Probabilistic models</topic><topic>Special Issue on Genetic and Evolutionary Computation</topic><topic>Theory of Computation</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehre, Per Kristian</creatorcontrib><creatorcontrib>Nguyen, Phan Trung Hai</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lehre, Per Kristian</au><au>Nguyen, Phan Trung Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Runtime Analyses of the Population-Based Univariate Estimation of Distribution Algorithms on LeadingOnes</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>83</volume><issue>10</issue><spage>3238</spage><epage>3280</epage><pages>3238-3280</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>We perform rigorous runtime analyses for the univariate marginal distribution algorithm ( UMDA ) and the population-based incremental learning ( PBIL ) Algorithm on LeadingOnes . For the UMDA , the currently known expected runtime on the function is O n λ log λ + n 2 under an offspring population size λ = Ω ( log n ) and a parent population size μ ≤ λ / ( e ( 1 + δ ) ) for any constant δ &gt; 0 (Dang and Lehre, GECCO 2015). There is no lower bound on the expected runtime under the same parameter settings. It also remains unknown whether the algorithm can still optimise the LeadingOnes function within a polynomial runtime when μ ≥ λ / ( e ( 1 + δ ) ) . In case of the PBIL , an expected runtime of O ( n 2 + c ) holds for some constant c ∈ ( 0 , 1 ) (Wu, Kolonko and Möhring, IEEE TEVC 2017). Despite being a generalisation of the UMDA , this upper bound is significantly asymptotically looser than the upper bound of O n 2 of the UMDA for λ = Ω ( log n ) ∩ O n / log n . Furthermore, the required population size is very large, i.e., λ = Ω ( n 1 + c ) . Our contributions are then threefold: (1) we show that the UMDA with μ = Ω ( log n ) and λ ≤ μ e 1 - ε / ( 1 + δ ) for any constants ε ∈ ( 0 , 1 ) and 0 &lt; δ ≤ e 1 - ε - 1 requires an expected runtime of e Ω ( μ ) on LeadingOnes , (2) an upper bound of O n λ log λ + n 2 is shown for the PBIL , which improves the current bound O n 2 + c by a significant factor of Θ ( n c ) , and (3) we for the first time consider the two algorithms on the LeadingOnes function in a noisy environment and obtain an expected runtime of O n 2 for appropriate parameter settings. Our results emphasise that despite the independence assumption in the probabilistic models, the UMDA and the PBIL with fine-tuned parameter choices can still cope very well with variable interactions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-021-00862-3</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0003-0783-2224</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2021-10, Vol.83 (10), p.3238-3280
issn 0178-4617
1432-0541
language eng
recordid cdi_proquest_journals_2578501201
source Springer Nature
subjects 2019
Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Lower bounds
Machine learning
Mathematics of Computing
Parameters
Polynomials
Population
Probabilistic models
Special Issue on Genetic and Evolutionary Computation
Theory of Computation
Upper bounds
title Runtime Analyses of the Population-Based Univariate Estimation of Distribution Algorithms on LeadingOnes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Runtime%20Analyses%20of%20the%20Population-Based%20Univariate%20Estimation%20of%20Distribution%20Algorithms%20on%20LeadingOnes&rft.jtitle=Algorithmica&rft.au=Lehre,%20Per%20Kristian&rft.date=2021-10-01&rft.volume=83&rft.issue=10&rft.spage=3238&rft.epage=3280&rft.pages=3238-3280&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-021-00862-3&rft_dat=%3Cproquest_cross%3E2578501201%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-263a8abfb9b37c536700cbfe02e26d3ac34deed73b05ec03ccd5c7ae22ff5dec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578501201&rft_id=info:pmid/&rfr_iscdi=true