Loading…

Robust portfolio rebalancing with cardinality and diversification constraints

In this paper, we develop a robust conditional value at risk (CVaR) optimal portfolio rebalancing model under various financial constraints to construct sparse and diversified rebalancing portfolios. Our model includes transaction costs and double cardinality constraints in order to capture the trad...

Full description

Saved in:
Bibliographic Details
Published in:Quantitative finance 2021-10, Vol.21 (10), p.1707-1721
Main Authors: Zhao, Zhihua, Xu, Fengmin, Du, Donglei, Meihua, Wang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-2755cab660fe33d82dd1aa0a3ed2ba33a85e93c92e1cea2f0a87dc1ee9f87c233
cites cdi_FETCH-LOGICAL-c428t-2755cab660fe33d82dd1aa0a3ed2ba33a85e93c92e1cea2f0a87dc1ee9f87c233
container_end_page 1721
container_issue 10
container_start_page 1707
container_title Quantitative finance
container_volume 21
creator Zhao, Zhihua
Xu, Fengmin
Du, Donglei
Meihua, Wang
description In this paper, we develop a robust conditional value at risk (CVaR) optimal portfolio rebalancing model under various financial constraints to construct sparse and diversified rebalancing portfolios. Our model includes transaction costs and double cardinality constraints in order to capture the trade-off between the limit of investment scale and the diversified industry coverage requirement. We first derive a closed-form solution for the robust CVaR portfolio rebalancing model with only transaction costs. This allows us to conduct an industry risk analysis for sparse portfolio rebalancing in the absence of diversification constraints. Then, we attempt to remedy the hidden industry risk by establishing a new robust portfolio rebalancing model with both sparse and diversified constraints. This is followed by the development of a distributed-version of the Alternating Direction Method of Multipliers (ADMM) algorithm, where each subproblem admits a closed-form solution. Finally, we conduct empirical tests to compare our proposed strategy with the standard sparse rebalancing and no-rebalancing strategies. The computational results demonstrate that our rebalancing approach produces sparse and diversified portfolios with better industry coverage. Additionally, to measure out-of-sample performance, two superiority indices are created based on worst-case CVaR and annualized return, respectively. Our ADMM strategy outperforms the sparse rebalancing and no-rebalancing strategies in terms of these indices.
doi_str_mv 10.1080/14697688.2021.1879392
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2579221068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579221068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-2755cab660fe33d82dd1aa0a3ed2ba33a85e93c92e1cea2f0a87dc1ee9f87c233</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QQi4nppHZybZKcUXVATRdbiTh6ZMk5qklv57O7S6dHUuh3MOlw-hS0omlAhyTaeNbBshJowwOqGilVyyIzQa_KptZHP8dwtxis5yXhBCa0LkCD2_xm6dC17FVFzsfcTJdtBD0D584I0vn1hDMj5A78sWQzDY-G-bsndeQ_ExYB1DLgl8KPkcnTjos7046Bi939-9zR6r-cvD0-x2XukpE6VibV1r6JqGOMu5EcwYCkCAW8M64BxEbSXXklmqLTBHQLRGU2ulE61mnI_R1X53leLX2uaiFnGddj9mxepWMkZJI3apep_SKeacrFOr5JeQtooSNZBTv-TUQE4dyO16N_ueDy6mJWxi6o0qsO1jcmlAkxX_f-IH9a13bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579221068</pqid></control><display><type>article</type><title>Robust portfolio rebalancing with cardinality and diversification constraints</title><source>EconLit s plnými texty</source><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Zhao, Zhihua ; Xu, Fengmin ; Du, Donglei ; Meihua, Wang</creator><creatorcontrib>Zhao, Zhihua ; Xu, Fengmin ; Du, Donglei ; Meihua, Wang</creatorcontrib><description>In this paper, we develop a robust conditional value at risk (CVaR) optimal portfolio rebalancing model under various financial constraints to construct sparse and diversified rebalancing portfolios. Our model includes transaction costs and double cardinality constraints in order to capture the trade-off between the limit of investment scale and the diversified industry coverage requirement. We first derive a closed-form solution for the robust CVaR portfolio rebalancing model with only transaction costs. This allows us to conduct an industry risk analysis for sparse portfolio rebalancing in the absence of diversification constraints. Then, we attempt to remedy the hidden industry risk by establishing a new robust portfolio rebalancing model with both sparse and diversified constraints. This is followed by the development of a distributed-version of the Alternating Direction Method of Multipliers (ADMM) algorithm, where each subproblem admits a closed-form solution. Finally, we conduct empirical tests to compare our proposed strategy with the standard sparse rebalancing and no-rebalancing strategies. The computational results demonstrate that our rebalancing approach produces sparse and diversified portfolios with better industry coverage. Additionally, to measure out-of-sample performance, two superiority indices are created based on worst-case CVaR and annualized return, respectively. Our ADMM strategy outperforms the sparse rebalancing and no-rebalancing strategies in terms of these indices.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697688.2021.1879392</identifier><language>eng</language><publisher>Bristol: Routledge</publisher><subject>ADMM ; Cardinality constraint ; Diversification constraint ; Portfolio rebalancing ; Sparse projection</subject><ispartof>Quantitative finance, 2021-10, Vol.21 (10), p.1707-1721</ispartof><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-2755cab660fe33d82dd1aa0a3ed2ba33a85e93c92e1cea2f0a87dc1ee9f87c233</citedby><cites>FETCH-LOGICAL-c428t-2755cab660fe33d82dd1aa0a3ed2ba33a85e93c92e1cea2f0a87dc1ee9f87c233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Zhao, Zhihua</creatorcontrib><creatorcontrib>Xu, Fengmin</creatorcontrib><creatorcontrib>Du, Donglei</creatorcontrib><creatorcontrib>Meihua, Wang</creatorcontrib><title>Robust portfolio rebalancing with cardinality and diversification constraints</title><title>Quantitative finance</title><description>In this paper, we develop a robust conditional value at risk (CVaR) optimal portfolio rebalancing model under various financial constraints to construct sparse and diversified rebalancing portfolios. Our model includes transaction costs and double cardinality constraints in order to capture the trade-off between the limit of investment scale and the diversified industry coverage requirement. We first derive a closed-form solution for the robust CVaR portfolio rebalancing model with only transaction costs. This allows us to conduct an industry risk analysis for sparse portfolio rebalancing in the absence of diversification constraints. Then, we attempt to remedy the hidden industry risk by establishing a new robust portfolio rebalancing model with both sparse and diversified constraints. This is followed by the development of a distributed-version of the Alternating Direction Method of Multipliers (ADMM) algorithm, where each subproblem admits a closed-form solution. Finally, we conduct empirical tests to compare our proposed strategy with the standard sparse rebalancing and no-rebalancing strategies. The computational results demonstrate that our rebalancing approach produces sparse and diversified portfolios with better industry coverage. Additionally, to measure out-of-sample performance, two superiority indices are created based on worst-case CVaR and annualized return, respectively. Our ADMM strategy outperforms the sparse rebalancing and no-rebalancing strategies in terms of these indices.</description><subject>ADMM</subject><subject>Cardinality constraint</subject><subject>Diversification constraint</subject><subject>Portfolio rebalancing</subject><subject>Sparse projection</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_QQi4nppHZybZKcUXVATRdbiTh6ZMk5qklv57O7S6dHUuh3MOlw-hS0omlAhyTaeNbBshJowwOqGilVyyIzQa_KptZHP8dwtxis5yXhBCa0LkCD2_xm6dC17FVFzsfcTJdtBD0D584I0vn1hDMj5A78sWQzDY-G-bsndeQ_ExYB1DLgl8KPkcnTjos7046Bi939-9zR6r-cvD0-x2XukpE6VibV1r6JqGOMu5EcwYCkCAW8M64BxEbSXXklmqLTBHQLRGU2ulE61mnI_R1X53leLX2uaiFnGddj9mxepWMkZJI3apep_SKeacrFOr5JeQtooSNZBTv-TUQE4dyO16N_ueDy6mJWxi6o0qsO1jcmlAkxX_f-IH9a13bg</recordid><startdate>20211003</startdate><enddate>20211003</enddate><creator>Zhao, Zhihua</creator><creator>Xu, Fengmin</creator><creator>Du, Donglei</creator><creator>Meihua, Wang</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211003</creationdate><title>Robust portfolio rebalancing with cardinality and diversification constraints</title><author>Zhao, Zhihua ; Xu, Fengmin ; Du, Donglei ; Meihua, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-2755cab660fe33d82dd1aa0a3ed2ba33a85e93c92e1cea2f0a87dc1ee9f87c233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ADMM</topic><topic>Cardinality constraint</topic><topic>Diversification constraint</topic><topic>Portfolio rebalancing</topic><topic>Sparse projection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zhihua</creatorcontrib><creatorcontrib>Xu, Fengmin</creatorcontrib><creatorcontrib>Du, Donglei</creatorcontrib><creatorcontrib>Meihua, Wang</creatorcontrib><collection>CrossRef</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zhihua</au><au>Xu, Fengmin</au><au>Du, Donglei</au><au>Meihua, Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust portfolio rebalancing with cardinality and diversification constraints</atitle><jtitle>Quantitative finance</jtitle><date>2021-10-03</date><risdate>2021</risdate><volume>21</volume><issue>10</issue><spage>1707</spage><epage>1721</epage><pages>1707-1721</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>In this paper, we develop a robust conditional value at risk (CVaR) optimal portfolio rebalancing model under various financial constraints to construct sparse and diversified rebalancing portfolios. Our model includes transaction costs and double cardinality constraints in order to capture the trade-off between the limit of investment scale and the diversified industry coverage requirement. We first derive a closed-form solution for the robust CVaR portfolio rebalancing model with only transaction costs. This allows us to conduct an industry risk analysis for sparse portfolio rebalancing in the absence of diversification constraints. Then, we attempt to remedy the hidden industry risk by establishing a new robust portfolio rebalancing model with both sparse and diversified constraints. This is followed by the development of a distributed-version of the Alternating Direction Method of Multipliers (ADMM) algorithm, where each subproblem admits a closed-form solution. Finally, we conduct empirical tests to compare our proposed strategy with the standard sparse rebalancing and no-rebalancing strategies. The computational results demonstrate that our rebalancing approach produces sparse and diversified portfolios with better industry coverage. Additionally, to measure out-of-sample performance, two superiority indices are created based on worst-case CVaR and annualized return, respectively. Our ADMM strategy outperforms the sparse rebalancing and no-rebalancing strategies in terms of these indices.</abstract><cop>Bristol</cop><pub>Routledge</pub><doi>10.1080/14697688.2021.1879392</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1469-7688
ispartof Quantitative finance, 2021-10, Vol.21 (10), p.1707-1721
issn 1469-7688
1469-7696
language eng
recordid cdi_proquest_journals_2579221068
source EconLit s plnými texty; Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Taylor and Francis Social Sciences and Humanities Collection
subjects ADMM
Cardinality constraint
Diversification constraint
Portfolio rebalancing
Sparse projection
title Robust portfolio rebalancing with cardinality and diversification constraints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20portfolio%20rebalancing%20with%20cardinality%20and%20diversification%20constraints&rft.jtitle=Quantitative%20finance&rft.au=Zhao,%20Zhihua&rft.date=2021-10-03&rft.volume=21&rft.issue=10&rft.spage=1707&rft.epage=1721&rft.pages=1707-1721&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697688.2021.1879392&rft_dat=%3Cproquest_cross%3E2579221068%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-2755cab660fe33d82dd1aa0a3ed2ba33a85e93c92e1cea2f0a87dc1ee9f87c233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2579221068&rft_id=info:pmid/&rfr_iscdi=true