Loading…
Wavelet preconditioning for EIT
In this paper the forward problem of Electrical Impedance Tomography (EIT) is considered. To achieve a flexible treatment of boundaries, the original two-dimensional domain is extended to a simple square one and essential boundary conditions are imposed by means of Lagrange multipliers, resulting in...
Saved in:
Published in: | Journal of physics. Conference series 2010-04, Vol.224 (1), p.012023 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2733-fffacc4a4e2c9f4febc3cdcd368d26b878cceb4323a1dff33b82d5463d7fb3673 |
container_end_page | |
container_issue | 1 |
container_start_page | 012023 |
container_title | Journal of physics. Conference series |
container_volume | 224 |
creator | Kantartzis, P Kunoth, A Pabel, R Liatsis, P |
description | In this paper the forward problem of Electrical Impedance Tomography (EIT) is considered. To achieve a flexible treatment of boundaries, the original two-dimensional domain is extended to a simple square one and essential boundary conditions are imposed by means of Lagrange multipliers, resulting in a saddle point system. For discretisation, we employ a biorthogonal B-Spline wavelet basis for which it can be shown that in the suggested forward EIT formulation the condition number of the system matrix is asymptotically uniformly bounded, and therefore iterative solvers converge with a speed independent of the discretisation level. |
doi_str_mv | 10.1088/1742-6596/224/1/012023 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580001194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580001194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2733-fffacc4a4e2c9f4febc3cdcd368d26b878cceb4323a1dff33b82d5463d7fb3673</originalsourceid><addsrcrecordid>eNqNkEFLxDAQhYMouK7-BV3wXJtk0jQ9yrLqwoKXFY8hTTLSZW1q0hX897ZUxMMenMsMzPtmeI-Qa0bvGFUqZ6XgmSwqmXMucpZTximHEzL7XZz-mc_JRUo7SmGockZuXs2n3_t-0UVvQ-uavglt074tMMTFar29JGdo9slf_fQ5eXlYbZdP2eb5cb2832SWlwAZIhprhRGe2woF-tqCddaBVI7LWpXKWl8L4GCYQwSoFXeFkOBKrEGWMCe3090uho-DT73ehUNsh5eaF4pSylglBpWcVDaGlKJH3cXm3cQvzagew9CjTz361EMYmukpjAFkE9iE7v9MdoQ5qtWdQ_gGd0BtMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580001194</pqid></control><display><type>article</type><title>Wavelet preconditioning for EIT</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Kantartzis, P ; Kunoth, A ; Pabel, R ; Liatsis, P</creator><creatorcontrib>Kantartzis, P ; Kunoth, A ; Pabel, R ; Liatsis, P</creatorcontrib><description>In this paper the forward problem of Electrical Impedance Tomography (EIT) is considered. To achieve a flexible treatment of boundaries, the original two-dimensional domain is extended to a simple square one and essential boundary conditions are imposed by means of Lagrange multipliers, resulting in a saddle point system. For discretisation, we employ a biorthogonal B-Spline wavelet basis for which it can be shown that in the suggested forward EIT formulation the condition number of the system matrix is asymptotically uniformly bounded, and therefore iterative solvers converge with a speed independent of the discretisation level.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/224/1/012023</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>B spline functions ; Boundary conditions ; Discretization ; Electrical impedance ; Forward problem ; Lagrange multiplier ; Physics ; Preconditioning ; Saddle points</subject><ispartof>Journal of physics. Conference series, 2010-04, Vol.224 (1), p.012023</ispartof><rights>Copyright IOP Publishing Apr 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2733-fffacc4a4e2c9f4febc3cdcd368d26b878cceb4323a1dff33b82d5463d7fb3673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2580001194?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Kantartzis, P</creatorcontrib><creatorcontrib>Kunoth, A</creatorcontrib><creatorcontrib>Pabel, R</creatorcontrib><creatorcontrib>Liatsis, P</creatorcontrib><title>Wavelet preconditioning for EIT</title><title>Journal of physics. Conference series</title><description>In this paper the forward problem of Electrical Impedance Tomography (EIT) is considered. To achieve a flexible treatment of boundaries, the original two-dimensional domain is extended to a simple square one and essential boundary conditions are imposed by means of Lagrange multipliers, resulting in a saddle point system. For discretisation, we employ a biorthogonal B-Spline wavelet basis for which it can be shown that in the suggested forward EIT formulation the condition number of the system matrix is asymptotically uniformly bounded, and therefore iterative solvers converge with a speed independent of the discretisation level.</description><subject>B spline functions</subject><subject>Boundary conditions</subject><subject>Discretization</subject><subject>Electrical impedance</subject><subject>Forward problem</subject><subject>Lagrange multiplier</subject><subject>Physics</subject><subject>Preconditioning</subject><subject>Saddle points</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkEFLxDAQhYMouK7-BV3wXJtk0jQ9yrLqwoKXFY8hTTLSZW1q0hX897ZUxMMenMsMzPtmeI-Qa0bvGFUqZ6XgmSwqmXMucpZTximHEzL7XZz-mc_JRUo7SmGockZuXs2n3_t-0UVvQ-uavglt074tMMTFar29JGdo9slf_fQ5eXlYbZdP2eb5cb2832SWlwAZIhprhRGe2woF-tqCddaBVI7LWpXKWl8L4GCYQwSoFXeFkOBKrEGWMCe3090uho-DT73ehUNsh5eaF4pSylglBpWcVDaGlKJH3cXm3cQvzagew9CjTz361EMYmukpjAFkE9iE7v9MdoQ5qtWdQ_gGd0BtMA</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Kantartzis, P</creator><creator>Kunoth, A</creator><creator>Pabel, R</creator><creator>Liatsis, P</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20100401</creationdate><title>Wavelet preconditioning for EIT</title><author>Kantartzis, P ; Kunoth, A ; Pabel, R ; Liatsis, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2733-fffacc4a4e2c9f4febc3cdcd368d26b878cceb4323a1dff33b82d5463d7fb3673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>B spline functions</topic><topic>Boundary conditions</topic><topic>Discretization</topic><topic>Electrical impedance</topic><topic>Forward problem</topic><topic>Lagrange multiplier</topic><topic>Physics</topic><topic>Preconditioning</topic><topic>Saddle points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kantartzis, P</creatorcontrib><creatorcontrib>Kunoth, A</creatorcontrib><creatorcontrib>Pabel, R</creatorcontrib><creatorcontrib>Liatsis, P</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kantartzis, P</au><au>Kunoth, A</au><au>Pabel, R</au><au>Liatsis, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet preconditioning for EIT</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>224</volume><issue>1</issue><spage>012023</spage><pages>012023-</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this paper the forward problem of Electrical Impedance Tomography (EIT) is considered. To achieve a flexible treatment of boundaries, the original two-dimensional domain is extended to a simple square one and essential boundary conditions are imposed by means of Lagrange multipliers, resulting in a saddle point system. For discretisation, we employ a biorthogonal B-Spline wavelet basis for which it can be shown that in the suggested forward EIT formulation the condition number of the system matrix is asymptotically uniformly bounded, and therefore iterative solvers converge with a speed independent of the discretisation level.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/224/1/012023</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6596 |
ispartof | Journal of physics. Conference series, 2010-04, Vol.224 (1), p.012023 |
issn | 1742-6596 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2580001194 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | B spline functions Boundary conditions Discretization Electrical impedance Forward problem Lagrange multiplier Physics Preconditioning Saddle points |
title | Wavelet preconditioning for EIT |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet%20preconditioning%20for%20EIT&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Kantartzis,%20P&rft.date=2010-04-01&rft.volume=224&rft.issue=1&rft.spage=012023&rft.pages=012023-&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/224/1/012023&rft_dat=%3Cproquest_cross%3E2580001194%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2733-fffacc4a4e2c9f4febc3cdcd368d26b878cceb4323a1dff33b82d5463d7fb3673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2580001194&rft_id=info:pmid/&rfr_iscdi=true |