Loading…

Wavelet preconditioning for EIT

In this paper the forward problem of Electrical Impedance Tomography (EIT) is considered. To achieve a flexible treatment of boundaries, the original two-dimensional domain is extended to a simple square one and essential boundary conditions are imposed by means of Lagrange multipliers, resulting in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2010-04, Vol.224 (1), p.012023
Main Authors: Kantartzis, P, Kunoth, A, Pabel, R, Liatsis, P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2733-fffacc4a4e2c9f4febc3cdcd368d26b878cceb4323a1dff33b82d5463d7fb3673
container_end_page
container_issue 1
container_start_page 012023
container_title Journal of physics. Conference series
container_volume 224
creator Kantartzis, P
Kunoth, A
Pabel, R
Liatsis, P
description In this paper the forward problem of Electrical Impedance Tomography (EIT) is considered. To achieve a flexible treatment of boundaries, the original two-dimensional domain is extended to a simple square one and essential boundary conditions are imposed by means of Lagrange multipliers, resulting in a saddle point system. For discretisation, we employ a biorthogonal B-Spline wavelet basis for which it can be shown that in the suggested forward EIT formulation the condition number of the system matrix is asymptotically uniformly bounded, and therefore iterative solvers converge with a speed independent of the discretisation level.
doi_str_mv 10.1088/1742-6596/224/1/012023
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580001194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580001194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2733-fffacc4a4e2c9f4febc3cdcd368d26b878cceb4323a1dff33b82d5463d7fb3673</originalsourceid><addsrcrecordid>eNqNkEFLxDAQhYMouK7-BV3wXJtk0jQ9yrLqwoKXFY8hTTLSZW1q0hX897ZUxMMenMsMzPtmeI-Qa0bvGFUqZ6XgmSwqmXMucpZTximHEzL7XZz-mc_JRUo7SmGockZuXs2n3_t-0UVvQ-uavglt074tMMTFar29JGdo9slf_fQ5eXlYbZdP2eb5cb2832SWlwAZIhprhRGe2woF-tqCddaBVI7LWpXKWl8L4GCYQwSoFXeFkOBKrEGWMCe3090uho-DT73ehUNsh5eaF4pSylglBpWcVDaGlKJH3cXm3cQvzagew9CjTz361EMYmukpjAFkE9iE7v9MdoQ5qtWdQ_gGd0BtMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580001194</pqid></control><display><type>article</type><title>Wavelet preconditioning for EIT</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Kantartzis, P ; Kunoth, A ; Pabel, R ; Liatsis, P</creator><creatorcontrib>Kantartzis, P ; Kunoth, A ; Pabel, R ; Liatsis, P</creatorcontrib><description>In this paper the forward problem of Electrical Impedance Tomography (EIT) is considered. To achieve a flexible treatment of boundaries, the original two-dimensional domain is extended to a simple square one and essential boundary conditions are imposed by means of Lagrange multipliers, resulting in a saddle point system. For discretisation, we employ a biorthogonal B-Spline wavelet basis for which it can be shown that in the suggested forward EIT formulation the condition number of the system matrix is asymptotically uniformly bounded, and therefore iterative solvers converge with a speed independent of the discretisation level.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/224/1/012023</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>B spline functions ; Boundary conditions ; Discretization ; Electrical impedance ; Forward problem ; Lagrange multiplier ; Physics ; Preconditioning ; Saddle points</subject><ispartof>Journal of physics. Conference series, 2010-04, Vol.224 (1), p.012023</ispartof><rights>Copyright IOP Publishing Apr 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2733-fffacc4a4e2c9f4febc3cdcd368d26b878cceb4323a1dff33b82d5463d7fb3673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2580001194?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Kantartzis, P</creatorcontrib><creatorcontrib>Kunoth, A</creatorcontrib><creatorcontrib>Pabel, R</creatorcontrib><creatorcontrib>Liatsis, P</creatorcontrib><title>Wavelet preconditioning for EIT</title><title>Journal of physics. Conference series</title><description>In this paper the forward problem of Electrical Impedance Tomography (EIT) is considered. To achieve a flexible treatment of boundaries, the original two-dimensional domain is extended to a simple square one and essential boundary conditions are imposed by means of Lagrange multipliers, resulting in a saddle point system. For discretisation, we employ a biorthogonal B-Spline wavelet basis for which it can be shown that in the suggested forward EIT formulation the condition number of the system matrix is asymptotically uniformly bounded, and therefore iterative solvers converge with a speed independent of the discretisation level.</description><subject>B spline functions</subject><subject>Boundary conditions</subject><subject>Discretization</subject><subject>Electrical impedance</subject><subject>Forward problem</subject><subject>Lagrange multiplier</subject><subject>Physics</subject><subject>Preconditioning</subject><subject>Saddle points</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkEFLxDAQhYMouK7-BV3wXJtk0jQ9yrLqwoKXFY8hTTLSZW1q0hX897ZUxMMenMsMzPtmeI-Qa0bvGFUqZ6XgmSwqmXMucpZTximHEzL7XZz-mc_JRUo7SmGockZuXs2n3_t-0UVvQ-uavglt074tMMTFar29JGdo9slf_fQ5eXlYbZdP2eb5cb2832SWlwAZIhprhRGe2woF-tqCddaBVI7LWpXKWl8L4GCYQwSoFXeFkOBKrEGWMCe3090uho-DT73ehUNsh5eaF4pSylglBpWcVDaGlKJH3cXm3cQvzagew9CjTz361EMYmukpjAFkE9iE7v9MdoQ5qtWdQ_gGd0BtMA</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Kantartzis, P</creator><creator>Kunoth, A</creator><creator>Pabel, R</creator><creator>Liatsis, P</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20100401</creationdate><title>Wavelet preconditioning for EIT</title><author>Kantartzis, P ; Kunoth, A ; Pabel, R ; Liatsis, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2733-fffacc4a4e2c9f4febc3cdcd368d26b878cceb4323a1dff33b82d5463d7fb3673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>B spline functions</topic><topic>Boundary conditions</topic><topic>Discretization</topic><topic>Electrical impedance</topic><topic>Forward problem</topic><topic>Lagrange multiplier</topic><topic>Physics</topic><topic>Preconditioning</topic><topic>Saddle points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kantartzis, P</creatorcontrib><creatorcontrib>Kunoth, A</creatorcontrib><creatorcontrib>Pabel, R</creatorcontrib><creatorcontrib>Liatsis, P</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kantartzis, P</au><au>Kunoth, A</au><au>Pabel, R</au><au>Liatsis, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet preconditioning for EIT</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>224</volume><issue>1</issue><spage>012023</spage><pages>012023-</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this paper the forward problem of Electrical Impedance Tomography (EIT) is considered. To achieve a flexible treatment of boundaries, the original two-dimensional domain is extended to a simple square one and essential boundary conditions are imposed by means of Lagrange multipliers, resulting in a saddle point system. For discretisation, we employ a biorthogonal B-Spline wavelet basis for which it can be shown that in the suggested forward EIT formulation the condition number of the system matrix is asymptotically uniformly bounded, and therefore iterative solvers converge with a speed independent of the discretisation level.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/224/1/012023</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6596
ispartof Journal of physics. Conference series, 2010-04, Vol.224 (1), p.012023
issn 1742-6596
1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2580001194
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects B spline functions
Boundary conditions
Discretization
Electrical impedance
Forward problem
Lagrange multiplier
Physics
Preconditioning
Saddle points
title Wavelet preconditioning for EIT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet%20preconditioning%20for%20EIT&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Kantartzis,%20P&rft.date=2010-04-01&rft.volume=224&rft.issue=1&rft.spage=012023&rft.pages=012023-&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/224/1/012023&rft_dat=%3Cproquest_cross%3E2580001194%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2733-fffacc4a4e2c9f4febc3cdcd368d26b878cceb4323a1dff33b82d5463d7fb3673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2580001194&rft_id=info:pmid/&rfr_iscdi=true