Loading…

Statistical performance analysis by loopy belief propagation in Bayesian image modeling

The mathematical structures of loopy belief propagation are reviewed for Bayesian image modeling from the standpoint of statistical mechanical informatics. We propose some schemes for evaluating the statistical performance of probabilistic binary image restoration. The schemes are constructed by mea...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2010-06, Vol.233 (1), p.012013
Main Authors: Tanaka, Kazuyuki, Kataoka, Shun, Yasuda, Muneki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-81ef44f40a624b1ccacd47341aaed07b1dd40debc9da2d1edb5381c0ce89175c3
cites cdi_FETCH-LOGICAL-c439t-81ef44f40a624b1ccacd47341aaed07b1dd40debc9da2d1edb5381c0ce89175c3
container_end_page
container_issue 1
container_start_page 012013
container_title Journal of physics. Conference series
container_volume 233
creator Tanaka, Kazuyuki
Kataoka, Shun
Yasuda, Muneki
description The mathematical structures of loopy belief propagation are reviewed for Bayesian image modeling from the standpoint of statistical mechanical informatics. We propose some schemes for evaluating the statistical performance of probabilistic binary image restoration. The schemes are constructed by means of the LBP, which is known as the Bethe approximation in statistical mechanics. We show some results of numerical experiments obtained by using the LBP algorithm as well as the statistical performance analysis for the probabilistic image restorations.
doi_str_mv 10.1088/1742-6596/233/1/012013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580054456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580054456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-81ef44f40a624b1ccacd47341aaed07b1dd40debc9da2d1edb5381c0ce89175c3</originalsourceid><addsrcrecordid>eNqNkM1LxDAQxYMouK7-CxLwXJtp0q-jLn7BggcVj2GapEuWblOT7qH_vSkV8ehc5sG8Nzx-hFwDuwVWVSmUIkuKvC7SjPMUUgYZA35CVr-H0z_6nFyEsGeMxylX5PNtxNGG0Srs6GB86_wBe2Uo9thNwQbaTLRzbphoYzprWjp4N-AuhlxPbU_vcTLBYtQH3Bl6cDra-t0lOWuxC-bqZ6_Jx-PD--Y52b4-vWzutokSvB6TCkwrRCsYFploQClUWpRcAKLRrGxAa8G0aVStMdNgdJPzChRTpqqhzBVfk5vlb6z1dTRhlHt39LF7kFleMZYLkRfRVSwu5V0I3rRy8LGvnyQwOUOUMx8585ERogS5QIxBWILWDf_NfAMZ9HTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580054456</pqid></control><display><type>article</type><title>Statistical performance analysis by loopy belief propagation in Bayesian image modeling</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Tanaka, Kazuyuki ; Kataoka, Shun ; Yasuda, Muneki</creator><creatorcontrib>Tanaka, Kazuyuki ; Kataoka, Shun ; Yasuda, Muneki</creatorcontrib><description>The mathematical structures of loopy belief propagation are reviewed for Bayesian image modeling from the standpoint of statistical mechanical informatics. We propose some schemes for evaluating the statistical performance of probabilistic binary image restoration. The schemes are constructed by means of the LBP, which is known as the Bethe approximation in statistical mechanics. We show some results of numerical experiments obtained by using the LBP algorithm as well as the statistical performance analysis for the probabilistic image restorations.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/233/1/012013</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Bayesian analysis ; Image restoration ; Performance evaluation ; Physics ; Propagation ; Statistical analysis ; Statistical mechanics</subject><ispartof>Journal of physics. Conference series, 2010-06, Vol.233 (1), p.012013</ispartof><rights>Copyright IOP Publishing Jun 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-81ef44f40a624b1ccacd47341aaed07b1dd40debc9da2d1edb5381c0ce89175c3</citedby><cites>FETCH-LOGICAL-c439t-81ef44f40a624b1ccacd47341aaed07b1dd40debc9da2d1edb5381c0ce89175c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2580054456?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Tanaka, Kazuyuki</creatorcontrib><creatorcontrib>Kataoka, Shun</creatorcontrib><creatorcontrib>Yasuda, Muneki</creatorcontrib><title>Statistical performance analysis by loopy belief propagation in Bayesian image modeling</title><title>Journal of physics. Conference series</title><description>The mathematical structures of loopy belief propagation are reviewed for Bayesian image modeling from the standpoint of statistical mechanical informatics. We propose some schemes for evaluating the statistical performance of probabilistic binary image restoration. The schemes are constructed by means of the LBP, which is known as the Bethe approximation in statistical mechanics. We show some results of numerical experiments obtained by using the LBP algorithm as well as the statistical performance analysis for the probabilistic image restorations.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Image restoration</subject><subject>Performance evaluation</subject><subject>Physics</subject><subject>Propagation</subject><subject>Statistical analysis</subject><subject>Statistical mechanics</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkM1LxDAQxYMouK7-CxLwXJtp0q-jLn7BggcVj2GapEuWblOT7qH_vSkV8ehc5sG8Nzx-hFwDuwVWVSmUIkuKvC7SjPMUUgYZA35CVr-H0z_6nFyEsGeMxylX5PNtxNGG0Srs6GB86_wBe2Uo9thNwQbaTLRzbphoYzprWjp4N-AuhlxPbU_vcTLBYtQH3Bl6cDra-t0lOWuxC-bqZ6_Jx-PD--Y52b4-vWzutokSvB6TCkwrRCsYFploQClUWpRcAKLRrGxAa8G0aVStMdNgdJPzChRTpqqhzBVfk5vlb6z1dTRhlHt39LF7kFleMZYLkRfRVSwu5V0I3rRy8LGvnyQwOUOUMx8585ERogS5QIxBWILWDf_NfAMZ9HTs</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Tanaka, Kazuyuki</creator><creator>Kataoka, Shun</creator><creator>Yasuda, Muneki</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20100601</creationdate><title>Statistical performance analysis by loopy belief propagation in Bayesian image modeling</title><author>Tanaka, Kazuyuki ; Kataoka, Shun ; Yasuda, Muneki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-81ef44f40a624b1ccacd47341aaed07b1dd40debc9da2d1edb5381c0ce89175c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Image restoration</topic><topic>Performance evaluation</topic><topic>Physics</topic><topic>Propagation</topic><topic>Statistical analysis</topic><topic>Statistical mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Kazuyuki</creatorcontrib><creatorcontrib>Kataoka, Shun</creatorcontrib><creatorcontrib>Yasuda, Muneki</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanaka, Kazuyuki</au><au>Kataoka, Shun</au><au>Yasuda, Muneki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical performance analysis by loopy belief propagation in Bayesian image modeling</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>233</volume><issue>1</issue><spage>012013</spage><pages>012013-</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The mathematical structures of loopy belief propagation are reviewed for Bayesian image modeling from the standpoint of statistical mechanical informatics. We propose some schemes for evaluating the statistical performance of probabilistic binary image restoration. The schemes are constructed by means of the LBP, which is known as the Bethe approximation in statistical mechanics. We show some results of numerical experiments obtained by using the LBP algorithm as well as the statistical performance analysis for the probabilistic image restorations.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/233/1/012013</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6596
ispartof Journal of physics. Conference series, 2010-06, Vol.233 (1), p.012013
issn 1742-6596
1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2580054456
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Algorithms
Bayesian analysis
Image restoration
Performance evaluation
Physics
Propagation
Statistical analysis
Statistical mechanics
title Statistical performance analysis by loopy belief propagation in Bayesian image modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20performance%20analysis%20by%20loopy%20belief%20propagation%20in%20Bayesian%20image%20modeling&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Tanaka,%20Kazuyuki&rft.date=2010-06-01&rft.volume=233&rft.issue=1&rft.spage=012013&rft.pages=012013-&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/233/1/012013&rft_dat=%3Cproquest_cross%3E2580054456%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-81ef44f40a624b1ccacd47341aaed07b1dd40debc9da2d1edb5381c0ce89175c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2580054456&rft_id=info:pmid/&rfr_iscdi=true