Loading…
Statistical performance analysis by loopy belief propagation in Bayesian image modeling
The mathematical structures of loopy belief propagation are reviewed for Bayesian image modeling from the standpoint of statistical mechanical informatics. We propose some schemes for evaluating the statistical performance of probabilistic binary image restoration. The schemes are constructed by mea...
Saved in:
Published in: | Journal of physics. Conference series 2010-06, Vol.233 (1), p.012013 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c439t-81ef44f40a624b1ccacd47341aaed07b1dd40debc9da2d1edb5381c0ce89175c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c439t-81ef44f40a624b1ccacd47341aaed07b1dd40debc9da2d1edb5381c0ce89175c3 |
container_end_page | |
container_issue | 1 |
container_start_page | 012013 |
container_title | Journal of physics. Conference series |
container_volume | 233 |
creator | Tanaka, Kazuyuki Kataoka, Shun Yasuda, Muneki |
description | The mathematical structures of loopy belief propagation are reviewed for Bayesian image modeling from the standpoint of statistical mechanical informatics. We propose some schemes for evaluating the statistical performance of probabilistic binary image restoration. The schemes are constructed by means of the LBP, which is known as the Bethe approximation in statistical mechanics. We show some results of numerical experiments obtained by using the LBP algorithm as well as the statistical performance analysis for the probabilistic image restorations. |
doi_str_mv | 10.1088/1742-6596/233/1/012013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580054456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580054456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-81ef44f40a624b1ccacd47341aaed07b1dd40debc9da2d1edb5381c0ce89175c3</originalsourceid><addsrcrecordid>eNqNkM1LxDAQxYMouK7-CxLwXJtp0q-jLn7BggcVj2GapEuWblOT7qH_vSkV8ehc5sG8Nzx-hFwDuwVWVSmUIkuKvC7SjPMUUgYZA35CVr-H0z_6nFyEsGeMxylX5PNtxNGG0Srs6GB86_wBe2Uo9thNwQbaTLRzbphoYzprWjp4N-AuhlxPbU_vcTLBYtQH3Bl6cDra-t0lOWuxC-bqZ6_Jx-PD--Y52b4-vWzutokSvB6TCkwrRCsYFploQClUWpRcAKLRrGxAa8G0aVStMdNgdJPzChRTpqqhzBVfk5vlb6z1dTRhlHt39LF7kFleMZYLkRfRVSwu5V0I3rRy8LGvnyQwOUOUMx8585ERogS5QIxBWILWDf_NfAMZ9HTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580054456</pqid></control><display><type>article</type><title>Statistical performance analysis by loopy belief propagation in Bayesian image modeling</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Tanaka, Kazuyuki ; Kataoka, Shun ; Yasuda, Muneki</creator><creatorcontrib>Tanaka, Kazuyuki ; Kataoka, Shun ; Yasuda, Muneki</creatorcontrib><description>The mathematical structures of loopy belief propagation are reviewed for Bayesian image modeling from the standpoint of statistical mechanical informatics. We propose some schemes for evaluating the statistical performance of probabilistic binary image restoration. The schemes are constructed by means of the LBP, which is known as the Bethe approximation in statistical mechanics. We show some results of numerical experiments obtained by using the LBP algorithm as well as the statistical performance analysis for the probabilistic image restorations.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/233/1/012013</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Bayesian analysis ; Image restoration ; Performance evaluation ; Physics ; Propagation ; Statistical analysis ; Statistical mechanics</subject><ispartof>Journal of physics. Conference series, 2010-06, Vol.233 (1), p.012013</ispartof><rights>Copyright IOP Publishing Jun 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-81ef44f40a624b1ccacd47341aaed07b1dd40debc9da2d1edb5381c0ce89175c3</citedby><cites>FETCH-LOGICAL-c439t-81ef44f40a624b1ccacd47341aaed07b1dd40debc9da2d1edb5381c0ce89175c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2580054456?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Tanaka, Kazuyuki</creatorcontrib><creatorcontrib>Kataoka, Shun</creatorcontrib><creatorcontrib>Yasuda, Muneki</creatorcontrib><title>Statistical performance analysis by loopy belief propagation in Bayesian image modeling</title><title>Journal of physics. Conference series</title><description>The mathematical structures of loopy belief propagation are reviewed for Bayesian image modeling from the standpoint of statistical mechanical informatics. We propose some schemes for evaluating the statistical performance of probabilistic binary image restoration. The schemes are constructed by means of the LBP, which is known as the Bethe approximation in statistical mechanics. We show some results of numerical experiments obtained by using the LBP algorithm as well as the statistical performance analysis for the probabilistic image restorations.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Image restoration</subject><subject>Performance evaluation</subject><subject>Physics</subject><subject>Propagation</subject><subject>Statistical analysis</subject><subject>Statistical mechanics</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkM1LxDAQxYMouK7-CxLwXJtp0q-jLn7BggcVj2GapEuWblOT7qH_vSkV8ehc5sG8Nzx-hFwDuwVWVSmUIkuKvC7SjPMUUgYZA35CVr-H0z_6nFyEsGeMxylX5PNtxNGG0Srs6GB86_wBe2Uo9thNwQbaTLRzbphoYzprWjp4N-AuhlxPbU_vcTLBYtQH3Bl6cDra-t0lOWuxC-bqZ6_Jx-PD--Y52b4-vWzutokSvB6TCkwrRCsYFploQClUWpRcAKLRrGxAa8G0aVStMdNgdJPzChRTpqqhzBVfk5vlb6z1dTRhlHt39LF7kFleMZYLkRfRVSwu5V0I3rRy8LGvnyQwOUOUMx8585ERogS5QIxBWILWDf_NfAMZ9HTs</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Tanaka, Kazuyuki</creator><creator>Kataoka, Shun</creator><creator>Yasuda, Muneki</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20100601</creationdate><title>Statistical performance analysis by loopy belief propagation in Bayesian image modeling</title><author>Tanaka, Kazuyuki ; Kataoka, Shun ; Yasuda, Muneki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-81ef44f40a624b1ccacd47341aaed07b1dd40debc9da2d1edb5381c0ce89175c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Image restoration</topic><topic>Performance evaluation</topic><topic>Physics</topic><topic>Propagation</topic><topic>Statistical analysis</topic><topic>Statistical mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Kazuyuki</creatorcontrib><creatorcontrib>Kataoka, Shun</creatorcontrib><creatorcontrib>Yasuda, Muneki</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanaka, Kazuyuki</au><au>Kataoka, Shun</au><au>Yasuda, Muneki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical performance analysis by loopy belief propagation in Bayesian image modeling</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>233</volume><issue>1</issue><spage>012013</spage><pages>012013-</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The mathematical structures of loopy belief propagation are reviewed for Bayesian image modeling from the standpoint of statistical mechanical informatics. We propose some schemes for evaluating the statistical performance of probabilistic binary image restoration. The schemes are constructed by means of the LBP, which is known as the Bethe approximation in statistical mechanics. We show some results of numerical experiments obtained by using the LBP algorithm as well as the statistical performance analysis for the probabilistic image restorations.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/233/1/012013</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6596 |
ispartof | Journal of physics. Conference series, 2010-06, Vol.233 (1), p.012013 |
issn | 1742-6596 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2580054456 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Algorithms Bayesian analysis Image restoration Performance evaluation Physics Propagation Statistical analysis Statistical mechanics |
title | Statistical performance analysis by loopy belief propagation in Bayesian image modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20performance%20analysis%20by%20loopy%20belief%20propagation%20in%20Bayesian%20image%20modeling&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Tanaka,%20Kazuyuki&rft.date=2010-06-01&rft.volume=233&rft.issue=1&rft.spage=012013&rft.pages=012013-&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/233/1/012013&rft_dat=%3Cproquest_cross%3E2580054456%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-81ef44f40a624b1ccacd47341aaed07b1dd40debc9da2d1edb5381c0ce89175c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2580054456&rft_id=info:pmid/&rfr_iscdi=true |