Loading…
Alkali metal-resistant mechanism for selective catalytic reduction of nitric oxide over V2O5/HWO catalysts
[Display omitted] •The controllable morphology synthesis of hexagonal WO3 (HWO) was achieved by commercial bacterial cellulose (C).•The obtained V2O5/HWO-C catalyst exhibits effective resistance to K poisoning and SO2, and follows the Langmuir-Hinshelwood mechanism.•The detailed alkali metal-resista...
Saved in:
Published in: | Fuel (Guildford) 2021-11, Vol.304, p.121445, Article 121445 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-e59499cbe895ea3f48c140eed0503fe1c5427b16cd239500938c644e974014f23 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-e59499cbe895ea3f48c140eed0503fe1c5427b16cd239500938c644e974014f23 |
container_end_page | |
container_issue | |
container_start_page | 121445 |
container_title | Fuel (Guildford) |
container_volume | 304 |
creator | Kang, Running He, Junyao Bin, Feng Dou, Baojuan Hao, Qinglan Wei, Xiaolin Nam Hui, Kwun San Hui, Kwan |
description | [Display omitted]
•The controllable morphology synthesis of hexagonal WO3 (HWO) was achieved by commercial bacterial cellulose (C).•The obtained V2O5/HWO-C catalyst exhibits effective resistance to K poisoning and SO2, and follows the Langmuir-Hinshelwood mechanism.•The detailed alkali metal-resistant pathways for the distribution of alkali metal ions (K+) on the K-V2O5/HWO-C catalyst were proposed.
A series of V2O5/HWO catalysts are prepared by hydrothermal and impregnation methods using different precursors, among which the V2O5/HWO-C catalyst exhibited the optimal NH3-SCR performance. Compared to oxalic acid (O) and water (W), commercial bacterial cellulose (C) as a precursor can firstly achieve a more controllable synthesis to form hexagonal WO3 (HWO) of V2O5/HWO-C catalyst. Various characterization (XRD, N2-BET, TEM, SEM, XPS, EDX mapping, and NH3/NO-TPD-MS) indicate that a higher specific surface area, abundant active oxygen and surface acidity result from the V2O5/HWO-C catalyst. The reason is that HWO-C has an excellent and smooth rod-shaped morphology, which promotes high dispersion of V2O5 on its surface. In situ IR results show that the SCR follows the Langmuir-Hinshelwood (L-H) mechanism, where absorbed NOx intermediate species are formed on the V2O5 and react with the NH4+ and NH3abs groups of V2O5 and HWO. After loading 1.75 wt% K+, the obtained K-V2O5/HWO-C catalyst exhibits effective resistance to K poisoning and SO2, and retains 78 % NOx conversion efficiency at 360 °C after 10 h, attributed to the effective capture of K+ (1.04 wt%) in HWO-C channels via a new pathway, although approximately 0.71 wt% K+ are located on HWO-C external surface with weak bonding to V2O5. |
doi_str_mv | 10.1016/j.fuel.2021.121445 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580074869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236121013247</els_id><sourcerecordid>2580074869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-e59499cbe895ea3f48c140eed0503fe1c5427b16cd239500938c644e974014f23</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9UzznAe4KUWtUOjGxzKkmTuYcTqpSVrsvzdlunZ1uYdz7uND6J6SnBJazLq83UOfM8JoThkVQl6gCa1KnpVU8ks0IcmVMV7Qa3QTQkcIKSspJqib99-6t3gLUfeZh2BD1ENMvfnSgw1b3DqPA_Rgoj0ANjr5jtEa7KHZJ80N2LV4sNEnzf3aBrA7gMcfbC1ny8_1ORFiuEVXre4D3J3rFL0_P70tltlq_fK6mK8yw0sWM5C1qGuzgaqWoHkrKkMFAWiIJLwFaqRg5YYWpmG8loTUvDKFEFCXglDRMj5FD-PcnXc_ewhRdW7vh7RSMVmlx0VV1MnFRpfxLgQPrdp5u9X-qChRJ6aqUyem6sRUjUxT6HEMQbr_YMGrYCwMBhrrEyDVOPtf_A_xi3-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580074869</pqid></control><display><type>article</type><title>Alkali metal-resistant mechanism for selective catalytic reduction of nitric oxide over V2O5/HWO catalysts</title><source>ScienceDirect Freedom Collection</source><creator>Kang, Running ; He, Junyao ; Bin, Feng ; Dou, Baojuan ; Hao, Qinglan ; Wei, Xiaolin ; Nam Hui, Kwun ; San Hui, Kwan</creator><creatorcontrib>Kang, Running ; He, Junyao ; Bin, Feng ; Dou, Baojuan ; Hao, Qinglan ; Wei, Xiaolin ; Nam Hui, Kwun ; San Hui, Kwan</creatorcontrib><description>[Display omitted]
•The controllable morphology synthesis of hexagonal WO3 (HWO) was achieved by commercial bacterial cellulose (C).•The obtained V2O5/HWO-C catalyst exhibits effective resistance to K poisoning and SO2, and follows the Langmuir-Hinshelwood mechanism.•The detailed alkali metal-resistant pathways for the distribution of alkali metal ions (K+) on the K-V2O5/HWO-C catalyst were proposed.
A series of V2O5/HWO catalysts are prepared by hydrothermal and impregnation methods using different precursors, among which the V2O5/HWO-C catalyst exhibited the optimal NH3-SCR performance. Compared to oxalic acid (O) and water (W), commercial bacterial cellulose (C) as a precursor can firstly achieve a more controllable synthesis to form hexagonal WO3 (HWO) of V2O5/HWO-C catalyst. Various characterization (XRD, N2-BET, TEM, SEM, XPS, EDX mapping, and NH3/NO-TPD-MS) indicate that a higher specific surface area, abundant active oxygen and surface acidity result from the V2O5/HWO-C catalyst. The reason is that HWO-C has an excellent and smooth rod-shaped morphology, which promotes high dispersion of V2O5 on its surface. In situ IR results show that the SCR follows the Langmuir-Hinshelwood (L-H) mechanism, where absorbed NOx intermediate species are formed on the V2O5 and react with the NH4+ and NH3abs groups of V2O5 and HWO. After loading 1.75 wt% K+, the obtained K-V2O5/HWO-C catalyst exhibits effective resistance to K poisoning and SO2, and retains 78 % NOx conversion efficiency at 360 °C after 10 h, attributed to the effective capture of K+ (1.04 wt%) in HWO-C channels via a new pathway, although approximately 0.71 wt% K+ are located on HWO-C external surface with weak bonding to V2O5.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.121445</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acidity ; Alkali metal-resistant ; Alkali metals ; Ammonia ; Bonding strength ; Catalysts ; Cellulose ; Chemical reduction ; Commercial bacterial cellulose ; Morphology ; Nitric oxide ; Oxalic acid ; Poisoning ; Potassium ; Precursors ; SCR reaction ; Selective catalytic reduction ; Sulfur dioxide ; V2O5/HWO catalyst ; Vanadium pentoxide ; X ray photoelectron spectroscopy</subject><ispartof>Fuel (Guildford), 2021-11, Vol.304, p.121445, Article 121445</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-e59499cbe895ea3f48c140eed0503fe1c5427b16cd239500938c644e974014f23</citedby><cites>FETCH-LOGICAL-c372t-e59499cbe895ea3f48c140eed0503fe1c5427b16cd239500938c644e974014f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kang, Running</creatorcontrib><creatorcontrib>He, Junyao</creatorcontrib><creatorcontrib>Bin, Feng</creatorcontrib><creatorcontrib>Dou, Baojuan</creatorcontrib><creatorcontrib>Hao, Qinglan</creatorcontrib><creatorcontrib>Wei, Xiaolin</creatorcontrib><creatorcontrib>Nam Hui, Kwun</creatorcontrib><creatorcontrib>San Hui, Kwan</creatorcontrib><title>Alkali metal-resistant mechanism for selective catalytic reduction of nitric oxide over V2O5/HWO catalysts</title><title>Fuel (Guildford)</title><description>[Display omitted]
•The controllable morphology synthesis of hexagonal WO3 (HWO) was achieved by commercial bacterial cellulose (C).•The obtained V2O5/HWO-C catalyst exhibits effective resistance to K poisoning and SO2, and follows the Langmuir-Hinshelwood mechanism.•The detailed alkali metal-resistant pathways for the distribution of alkali metal ions (K+) on the K-V2O5/HWO-C catalyst were proposed.
A series of V2O5/HWO catalysts are prepared by hydrothermal and impregnation methods using different precursors, among which the V2O5/HWO-C catalyst exhibited the optimal NH3-SCR performance. Compared to oxalic acid (O) and water (W), commercial bacterial cellulose (C) as a precursor can firstly achieve a more controllable synthesis to form hexagonal WO3 (HWO) of V2O5/HWO-C catalyst. Various characterization (XRD, N2-BET, TEM, SEM, XPS, EDX mapping, and NH3/NO-TPD-MS) indicate that a higher specific surface area, abundant active oxygen and surface acidity result from the V2O5/HWO-C catalyst. The reason is that HWO-C has an excellent and smooth rod-shaped morphology, which promotes high dispersion of V2O5 on its surface. In situ IR results show that the SCR follows the Langmuir-Hinshelwood (L-H) mechanism, where absorbed NOx intermediate species are formed on the V2O5 and react with the NH4+ and NH3abs groups of V2O5 and HWO. After loading 1.75 wt% K+, the obtained K-V2O5/HWO-C catalyst exhibits effective resistance to K poisoning and SO2, and retains 78 % NOx conversion efficiency at 360 °C after 10 h, attributed to the effective capture of K+ (1.04 wt%) in HWO-C channels via a new pathway, although approximately 0.71 wt% K+ are located on HWO-C external surface with weak bonding to V2O5.</description><subject>Acidity</subject><subject>Alkali metal-resistant</subject><subject>Alkali metals</subject><subject>Ammonia</subject><subject>Bonding strength</subject><subject>Catalysts</subject><subject>Cellulose</subject><subject>Chemical reduction</subject><subject>Commercial bacterial cellulose</subject><subject>Morphology</subject><subject>Nitric oxide</subject><subject>Oxalic acid</subject><subject>Poisoning</subject><subject>Potassium</subject><subject>Precursors</subject><subject>SCR reaction</subject><subject>Selective catalytic reduction</subject><subject>Sulfur dioxide</subject><subject>V2O5/HWO catalyst</subject><subject>Vanadium pentoxide</subject><subject>X ray photoelectron spectroscopy</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9UzznAe4KUWtUOjGxzKkmTuYcTqpSVrsvzdlunZ1uYdz7uND6J6SnBJazLq83UOfM8JoThkVQl6gCa1KnpVU8ks0IcmVMV7Qa3QTQkcIKSspJqib99-6t3gLUfeZh2BD1ENMvfnSgw1b3DqPA_Rgoj0ANjr5jtEa7KHZJ80N2LV4sNEnzf3aBrA7gMcfbC1ny8_1ORFiuEVXre4D3J3rFL0_P70tltlq_fK6mK8yw0sWM5C1qGuzgaqWoHkrKkMFAWiIJLwFaqRg5YYWpmG8loTUvDKFEFCXglDRMj5FD-PcnXc_ewhRdW7vh7RSMVmlx0VV1MnFRpfxLgQPrdp5u9X-qChRJ6aqUyem6sRUjUxT6HEMQbr_YMGrYCwMBhrrEyDVOPtf_A_xi3-o</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Kang, Running</creator><creator>He, Junyao</creator><creator>Bin, Feng</creator><creator>Dou, Baojuan</creator><creator>Hao, Qinglan</creator><creator>Wei, Xiaolin</creator><creator>Nam Hui, Kwun</creator><creator>San Hui, Kwan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20211115</creationdate><title>Alkali metal-resistant mechanism for selective catalytic reduction of nitric oxide over V2O5/HWO catalysts</title><author>Kang, Running ; He, Junyao ; Bin, Feng ; Dou, Baojuan ; Hao, Qinglan ; Wei, Xiaolin ; Nam Hui, Kwun ; San Hui, Kwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-e59499cbe895ea3f48c140eed0503fe1c5427b16cd239500938c644e974014f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acidity</topic><topic>Alkali metal-resistant</topic><topic>Alkali metals</topic><topic>Ammonia</topic><topic>Bonding strength</topic><topic>Catalysts</topic><topic>Cellulose</topic><topic>Chemical reduction</topic><topic>Commercial bacterial cellulose</topic><topic>Morphology</topic><topic>Nitric oxide</topic><topic>Oxalic acid</topic><topic>Poisoning</topic><topic>Potassium</topic><topic>Precursors</topic><topic>SCR reaction</topic><topic>Selective catalytic reduction</topic><topic>Sulfur dioxide</topic><topic>V2O5/HWO catalyst</topic><topic>Vanadium pentoxide</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Running</creatorcontrib><creatorcontrib>He, Junyao</creatorcontrib><creatorcontrib>Bin, Feng</creatorcontrib><creatorcontrib>Dou, Baojuan</creatorcontrib><creatorcontrib>Hao, Qinglan</creatorcontrib><creatorcontrib>Wei, Xiaolin</creatorcontrib><creatorcontrib>Nam Hui, Kwun</creatorcontrib><creatorcontrib>San Hui, Kwan</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Running</au><au>He, Junyao</au><au>Bin, Feng</au><au>Dou, Baojuan</au><au>Hao, Qinglan</au><au>Wei, Xiaolin</au><au>Nam Hui, Kwun</au><au>San Hui, Kwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alkali metal-resistant mechanism for selective catalytic reduction of nitric oxide over V2O5/HWO catalysts</atitle><jtitle>Fuel (Guildford)</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>304</volume><spage>121445</spage><pages>121445-</pages><artnum>121445</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted]
•The controllable morphology synthesis of hexagonal WO3 (HWO) was achieved by commercial bacterial cellulose (C).•The obtained V2O5/HWO-C catalyst exhibits effective resistance to K poisoning and SO2, and follows the Langmuir-Hinshelwood mechanism.•The detailed alkali metal-resistant pathways for the distribution of alkali metal ions (K+) on the K-V2O5/HWO-C catalyst were proposed.
A series of V2O5/HWO catalysts are prepared by hydrothermal and impregnation methods using different precursors, among which the V2O5/HWO-C catalyst exhibited the optimal NH3-SCR performance. Compared to oxalic acid (O) and water (W), commercial bacterial cellulose (C) as a precursor can firstly achieve a more controllable synthesis to form hexagonal WO3 (HWO) of V2O5/HWO-C catalyst. Various characterization (XRD, N2-BET, TEM, SEM, XPS, EDX mapping, and NH3/NO-TPD-MS) indicate that a higher specific surface area, abundant active oxygen and surface acidity result from the V2O5/HWO-C catalyst. The reason is that HWO-C has an excellent and smooth rod-shaped morphology, which promotes high dispersion of V2O5 on its surface. In situ IR results show that the SCR follows the Langmuir-Hinshelwood (L-H) mechanism, where absorbed NOx intermediate species are formed on the V2O5 and react with the NH4+ and NH3abs groups of V2O5 and HWO. After loading 1.75 wt% K+, the obtained K-V2O5/HWO-C catalyst exhibits effective resistance to K poisoning and SO2, and retains 78 % NOx conversion efficiency at 360 °C after 10 h, attributed to the effective capture of K+ (1.04 wt%) in HWO-C channels via a new pathway, although approximately 0.71 wt% K+ are located on HWO-C external surface with weak bonding to V2O5.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.121445</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2021-11, Vol.304, p.121445, Article 121445 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2580074869 |
source | ScienceDirect Freedom Collection |
subjects | Acidity Alkali metal-resistant Alkali metals Ammonia Bonding strength Catalysts Cellulose Chemical reduction Commercial bacterial cellulose Morphology Nitric oxide Oxalic acid Poisoning Potassium Precursors SCR reaction Selective catalytic reduction Sulfur dioxide V2O5/HWO catalyst Vanadium pentoxide X ray photoelectron spectroscopy |
title | Alkali metal-resistant mechanism for selective catalytic reduction of nitric oxide over V2O5/HWO catalysts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alkali%20metal-resistant%20mechanism%20for%20selective%20catalytic%20reduction%20of%20nitric%20oxide%20over%20V2O5/HWO%20catalysts&rft.jtitle=Fuel%20(Guildford)&rft.au=Kang,%20Running&rft.date=2021-11-15&rft.volume=304&rft.spage=121445&rft.pages=121445-&rft.artnum=121445&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.121445&rft_dat=%3Cproquest_cross%3E2580074869%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-e59499cbe895ea3f48c140eed0503fe1c5427b16cd239500938c644e974014f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2580074869&rft_id=info:pmid/&rfr_iscdi=true |