Loading…
Development of Halbach magnet for portable NMR device
Nuclear magnetic resonance (NMR) has enormous potential for various applications in industry as the on-line or at-line test/control device of process environments. Advantage of NMR is its non-destructive nature, because it does not require the measurement probe to have a contact with the tested medi...
Saved in:
Published in: | Journal of physics. Conference series 2009-03, Vol.153 (1), p.012047 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nuclear magnetic resonance (NMR) has enormous potential for various applications in industry as the on-line or at-line test/control device of process environments. Advantage of NMR is its non-destructive nature, because it does not require the measurement probe to have a contact with the tested media. Despite of the recent progress in this direction, application of NMR in industry is still very limited. This is related to the technical and analytical complications of NMR as a method, and high cost of NMR analyzers available at the market. However in many applications, NMR is a very useful technique to test various products and to monitor quantitatively industrial processes. Fortunately usually there is no need in a high-field superconducting magnets to obtain the high-resolution spectra with the detailed information on chemical shifts and coupling-constant. NMR analyzers are designed to obtain the relaxation parameters by measuring the NMR spectra in the time domain rather than in frequency domain. Therefore it is possible to use small magnetic field (and low frequency of 2-60 MHz) in NMR systems, based on permanent magnet technology, which are specially designed for specific at-line and on-line process applications. In this work we present the permanent magnet system developed to use in the portative NMR devices. We discuss the experimental parameters of the designed Halbach magnet system and compare them with results of theoretical modelling. |
---|---|
ISSN: | 1742-6596 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/153/1/012047 |