Loading…
Diver’s hand gesture recognition and segmentation for human–robot interaction on AUV
For the interaction between marine robots and divers in the underwater environment, a method of diver’s gesture recognition and segmentation is proposed. This method first uses the progressive growing training method to optimize the generative adversarial networks, generating high-resolution images...
Saved in:
Published in: | Signal, image and video processing image and video processing, 2021-11, Vol.15 (8), p.1899-1906 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For the interaction between marine robots and divers in the underwater environment, a method of diver’s gesture recognition and segmentation is proposed. This method first uses the progressive growing training method to optimize the generative adversarial networks, generating high-resolution images with complex content. Then, we use the generative adversarial network model as a data augmentation method and generate high-resolution images. We make the masks of gestures in the new dataset and use the mask R-CNN algorithm for gesture recognition and gesture segmentation. The experimental results show that the generating data improves the accuracy of several object recognition algorithms but cannot completely replace the original data and the mean average precision of gesture recognition is 0.85. The visualization shows the validity and weakness of segmentation. |
---|---|
ISSN: | 1863-1703 1863-1711 |
DOI: | 10.1007/s11760-021-01930-5 |