Loading…

Preparation of ternary composite CF@γ-MnO2/PANI material in electrochemical supercapacitors

In this paper, a ternary hybrid material carbon fiber/manganese dioxide/polyaniline (CF@γ-MnO 2 /PANI) is synthesized for its utility in supercapacitor application. γ-MnO 2 nanoparticles are loaded on the surface of CF under hydrothermal conditions to prepare CF@γ-MnO 2 . Subsequently, PANI in situ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2021-10, Vol.32 (20), p.25300-25317
Main Authors: Zhu, Yuanqiang, Xu, Hui, Tang, Jing, Jiang, Xudong, Bao, Yuanhai, Chen, Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c234x-a5989c43ef9fe376a4a33c799ba2fd26f639e1a37c48b2fce19190876f761f633
cites cdi_FETCH-LOGICAL-c234x-a5989c43ef9fe376a4a33c799ba2fd26f639e1a37c48b2fce19190876f761f633
container_end_page 25317
container_issue 20
container_start_page 25300
container_title Journal of materials science. Materials in electronics
container_volume 32
creator Zhu, Yuanqiang
Xu, Hui
Tang, Jing
Jiang, Xudong
Bao, Yuanhai
Chen, Yong
description In this paper, a ternary hybrid material carbon fiber/manganese dioxide/polyaniline (CF@γ-MnO 2 /PANI) is synthesized for its utility in supercapacitor application. γ-MnO 2 nanoparticles are loaded on the surface of CF under hydrothermal conditions to prepare CF@γ-MnO 2 . Subsequently, PANI in situ polymerized on the surface of CF@γ-MnO 2 to form CF@γ-MnO 2 /PANI ternary composite. The electrochemical performance of CF@γ-MnO 2 /PANI is investigated using cyclic voltammetry (CV), galvanostatic charge–discharge measurement (GCD), and electrochemical impedance spectroscopy (EIS). Compared with CF/PANI and PANI, the as-prepared ternary hybrid material exhibits the highest capacitance of 654.3 F g −1 at a current density of 1 A g −1 , its rate performance is 78.1% (10 A g −1 ), and 75.94% of the initial capacitance after 4000 charge–discharge cycles. The asymmetric supercapacitor shows a specific capacitance of 260 F g −1 and high energy density 30.9 Wh kg −1 at a power density of 750 W kg −1 , good cycling stability by maintaining 73.2% initial capacitance after 5000 cycles. The good capacitive behaviors demonstrated that the low-cost CF provides an excellent base for γ-MnO 2 and PANI. The nanoparticles γ-MnO 2 is supported on the surface of CF and coated by PANI, which effectively improves the utilization rate of MnO 2 and PANI. It could be a promising material for supercapacitors applications.
doi_str_mv 10.1007/s10854-021-06989-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580594532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580594532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234x-a5989c43ef9fe376a4a33c799ba2fd26f639e1a37c48b2fce19190876f761f633</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GrAdWz-M9lZij-FartQcCGENCY6ZWYyJlOoz-V7-ExGR3Dn6sK93znccwA4xegcIyQnCaOSM4gIhkioUsHdHhhhLilkJXncByOkuISME3IIjlLaIIQEo-UIPK2i60w0fRXaIviid7E18b2woelCqnpXzK4uPj_gbbskk9X0bl40JjOVqYuqLVztbB-DfXVNZfMqbTsXremMrfoQ0zE48KZO7uR3jsHD1eX97AYultfz2XQBLaFsBw3PH1tGnVfeUSkMM5RaqdTaEP9MhBdUOWyotKxcE28dVlihUgovBc5HOgZng28Xw9vWpV5vwjbnqJMmvERcMU5JpshA2RhSis7rLlZNDqsx0t8t6qFFnVvUPy3qXRbRQZQy3L64-Gf9j-oLyq927g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580594532</pqid></control><display><type>article</type><title>Preparation of ternary composite CF@γ-MnO2/PANI material in electrochemical supercapacitors</title><source>Springer Link</source><creator>Zhu, Yuanqiang ; Xu, Hui ; Tang, Jing ; Jiang, Xudong ; Bao, Yuanhai ; Chen, Yong</creator><creatorcontrib>Zhu, Yuanqiang ; Xu, Hui ; Tang, Jing ; Jiang, Xudong ; Bao, Yuanhai ; Chen, Yong</creatorcontrib><description>In this paper, a ternary hybrid material carbon fiber/manganese dioxide/polyaniline (CF@γ-MnO 2 /PANI) is synthesized for its utility in supercapacitor application. γ-MnO 2 nanoparticles are loaded on the surface of CF under hydrothermal conditions to prepare CF@γ-MnO 2 . Subsequently, PANI in situ polymerized on the surface of CF@γ-MnO 2 to form CF@γ-MnO 2 /PANI ternary composite. The electrochemical performance of CF@γ-MnO 2 /PANI is investigated using cyclic voltammetry (CV), galvanostatic charge–discharge measurement (GCD), and electrochemical impedance spectroscopy (EIS). Compared with CF/PANI and PANI, the as-prepared ternary hybrid material exhibits the highest capacitance of 654.3 F g −1 at a current density of 1 A g −1 , its rate performance is 78.1% (10 A g −1 ), and 75.94% of the initial capacitance after 4000 charge–discharge cycles. The asymmetric supercapacitor shows a specific capacitance of 260 F g −1 and high energy density 30.9 Wh kg −1 at a power density of 750 W kg −1 , good cycling stability by maintaining 73.2% initial capacitance after 5000 cycles. The good capacitive behaviors demonstrated that the low-cost CF provides an excellent base for γ-MnO 2 and PANI. The nanoparticles γ-MnO 2 is supported on the surface of CF and coated by PANI, which effectively improves the utilization rate of MnO 2 and PANI. It could be a promising material for supercapacitors applications.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-06989-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Capacitance ; Carbon fibers ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Discharge measurement ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Flux density ; Manganese dioxide ; Materials Science ; Nanoparticles ; Optical and Electronic Materials ; Polyanilines ; Supercapacitors</subject><ispartof>Journal of materials science. Materials in electronics, 2021-10, Vol.32 (20), p.25300-25317</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c234x-a5989c43ef9fe376a4a33c799ba2fd26f639e1a37c48b2fce19190876f761f633</citedby><cites>FETCH-LOGICAL-c234x-a5989c43ef9fe376a4a33c799ba2fd26f639e1a37c48b2fce19190876f761f633</cites><orcidid>0000-0003-4900-8794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Yuanqiang</creatorcontrib><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Tang, Jing</creatorcontrib><creatorcontrib>Jiang, Xudong</creatorcontrib><creatorcontrib>Bao, Yuanhai</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><title>Preparation of ternary composite CF@γ-MnO2/PANI material in electrochemical supercapacitors</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this paper, a ternary hybrid material carbon fiber/manganese dioxide/polyaniline (CF@γ-MnO 2 /PANI) is synthesized for its utility in supercapacitor application. γ-MnO 2 nanoparticles are loaded on the surface of CF under hydrothermal conditions to prepare CF@γ-MnO 2 . Subsequently, PANI in situ polymerized on the surface of CF@γ-MnO 2 to form CF@γ-MnO 2 /PANI ternary composite. The electrochemical performance of CF@γ-MnO 2 /PANI is investigated using cyclic voltammetry (CV), galvanostatic charge–discharge measurement (GCD), and electrochemical impedance spectroscopy (EIS). Compared with CF/PANI and PANI, the as-prepared ternary hybrid material exhibits the highest capacitance of 654.3 F g −1 at a current density of 1 A g −1 , its rate performance is 78.1% (10 A g −1 ), and 75.94% of the initial capacitance after 4000 charge–discharge cycles. The asymmetric supercapacitor shows a specific capacitance of 260 F g −1 and high energy density 30.9 Wh kg −1 at a power density of 750 W kg −1 , good cycling stability by maintaining 73.2% initial capacitance after 5000 cycles. The good capacitive behaviors demonstrated that the low-cost CF provides an excellent base for γ-MnO 2 and PANI. The nanoparticles γ-MnO 2 is supported on the surface of CF and coated by PANI, which effectively improves the utilization rate of MnO 2 and PANI. It could be a promising material for supercapacitors applications.</description><subject>Capacitance</subject><subject>Carbon fibers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Discharge measurement</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Flux density</subject><subject>Manganese dioxide</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Polyanilines</subject><subject>Supercapacitors</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4GrAdWz-M9lZij-FartQcCGENCY6ZWYyJlOoz-V7-ExGR3Dn6sK93znccwA4xegcIyQnCaOSM4gIhkioUsHdHhhhLilkJXncByOkuISME3IIjlLaIIQEo-UIPK2i60w0fRXaIviid7E18b2woelCqnpXzK4uPj_gbbskk9X0bl40JjOVqYuqLVztbB-DfXVNZfMqbTsXremMrfoQ0zE48KZO7uR3jsHD1eX97AYultfz2XQBLaFsBw3PH1tGnVfeUSkMM5RaqdTaEP9MhBdUOWyotKxcE28dVlihUgovBc5HOgZng28Xw9vWpV5vwjbnqJMmvERcMU5JpshA2RhSis7rLlZNDqsx0t8t6qFFnVvUPy3qXRbRQZQy3L64-Gf9j-oLyq927g</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhu, Yuanqiang</creator><creator>Xu, Hui</creator><creator>Tang, Jing</creator><creator>Jiang, Xudong</creator><creator>Bao, Yuanhai</creator><creator>Chen, Yong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4900-8794</orcidid></search><sort><creationdate>20211001</creationdate><title>Preparation of ternary composite CF@γ-MnO2/PANI material in electrochemical supercapacitors</title><author>Zhu, Yuanqiang ; Xu, Hui ; Tang, Jing ; Jiang, Xudong ; Bao, Yuanhai ; Chen, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234x-a5989c43ef9fe376a4a33c799ba2fd26f639e1a37c48b2fce19190876f761f633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capacitance</topic><topic>Carbon fibers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Discharge measurement</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Flux density</topic><topic>Manganese dioxide</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Polyanilines</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yuanqiang</creatorcontrib><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Tang, Jing</creatorcontrib><creatorcontrib>Jiang, Xudong</creatorcontrib><creatorcontrib>Bao, Yuanhai</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yuanqiang</au><au>Xu, Hui</au><au>Tang, Jing</au><au>Jiang, Xudong</au><au>Bao, Yuanhai</au><au>Chen, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of ternary composite CF@γ-MnO2/PANI material in electrochemical supercapacitors</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>32</volume><issue>20</issue><spage>25300</spage><epage>25317</epage><pages>25300-25317</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this paper, a ternary hybrid material carbon fiber/manganese dioxide/polyaniline (CF@γ-MnO 2 /PANI) is synthesized for its utility in supercapacitor application. γ-MnO 2 nanoparticles are loaded on the surface of CF under hydrothermal conditions to prepare CF@γ-MnO 2 . Subsequently, PANI in situ polymerized on the surface of CF@γ-MnO 2 to form CF@γ-MnO 2 /PANI ternary composite. The electrochemical performance of CF@γ-MnO 2 /PANI is investigated using cyclic voltammetry (CV), galvanostatic charge–discharge measurement (GCD), and electrochemical impedance spectroscopy (EIS). Compared with CF/PANI and PANI, the as-prepared ternary hybrid material exhibits the highest capacitance of 654.3 F g −1 at a current density of 1 A g −1 , its rate performance is 78.1% (10 A g −1 ), and 75.94% of the initial capacitance after 4000 charge–discharge cycles. The asymmetric supercapacitor shows a specific capacitance of 260 F g −1 and high energy density 30.9 Wh kg −1 at a power density of 750 W kg −1 , good cycling stability by maintaining 73.2% initial capacitance after 5000 cycles. The good capacitive behaviors demonstrated that the low-cost CF provides an excellent base for γ-MnO 2 and PANI. The nanoparticles γ-MnO 2 is supported on the surface of CF and coated by PANI, which effectively improves the utilization rate of MnO 2 and PANI. It could be a promising material for supercapacitors applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-06989-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4900-8794</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021-10, Vol.32 (20), p.25300-25317
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2580594532
source Springer Link
subjects Capacitance
Carbon fibers
Characterization and Evaluation of Materials
Chemistry and Materials Science
Discharge measurement
Electrochemical analysis
Electrochemical impedance spectroscopy
Flux density
Manganese dioxide
Materials Science
Nanoparticles
Optical and Electronic Materials
Polyanilines
Supercapacitors
title Preparation of ternary composite CF@γ-MnO2/PANI material in electrochemical supercapacitors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20ternary%20composite%20CF@%CE%B3-MnO2/PANI%20material%20in%20electrochemical%20supercapacitors&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhu,%20Yuanqiang&rft.date=2021-10-01&rft.volume=32&rft.issue=20&rft.spage=25300&rft.epage=25317&rft.pages=25300-25317&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-06989-x&rft_dat=%3Cproquest_cross%3E2580594532%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c234x-a5989c43ef9fe376a4a33c799ba2fd26f639e1a37c48b2fce19190876f761f633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2580594532&rft_id=info:pmid/&rfr_iscdi=true