Loading…
Preparation of ternary composite CF@γ-MnO2/PANI material in electrochemical supercapacitors
In this paper, a ternary hybrid material carbon fiber/manganese dioxide/polyaniline (CF@γ-MnO 2 /PANI) is synthesized for its utility in supercapacitor application. γ-MnO 2 nanoparticles are loaded on the surface of CF under hydrothermal conditions to prepare CF@γ-MnO 2 . Subsequently, PANI in situ...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2021-10, Vol.32 (20), p.25300-25317 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c234x-a5989c43ef9fe376a4a33c799ba2fd26f639e1a37c48b2fce19190876f761f633 |
---|---|
cites | cdi_FETCH-LOGICAL-c234x-a5989c43ef9fe376a4a33c799ba2fd26f639e1a37c48b2fce19190876f761f633 |
container_end_page | 25317 |
container_issue | 20 |
container_start_page | 25300 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Zhu, Yuanqiang Xu, Hui Tang, Jing Jiang, Xudong Bao, Yuanhai Chen, Yong |
description | In this paper, a ternary hybrid material carbon fiber/manganese dioxide/polyaniline (CF@γ-MnO
2
/PANI) is synthesized for its utility in supercapacitor application. γ-MnO
2
nanoparticles are loaded on the surface of CF under hydrothermal conditions to prepare CF@γ-MnO
2
. Subsequently, PANI in situ polymerized on the surface of CF@γ-MnO
2
to form CF@γ-MnO
2
/PANI ternary composite. The electrochemical performance of CF@γ-MnO
2
/PANI is investigated using cyclic voltammetry (CV), galvanostatic charge–discharge measurement (GCD), and electrochemical impedance spectroscopy (EIS). Compared with CF/PANI and PANI, the as-prepared ternary hybrid material exhibits the highest capacitance of 654.3 F g
−1
at a current density of 1 A g
−1
, its rate performance is 78.1% (10 A g
−1
), and 75.94% of the initial capacitance after 4000 charge–discharge cycles. The asymmetric supercapacitor shows a specific capacitance of 260 F g
−1
and high energy density 30.9 Wh kg
−1
at a power density of 750 W kg
−1
, good cycling stability by maintaining 73.2% initial capacitance after 5000 cycles. The good capacitive behaviors demonstrated that the low-cost CF provides an excellent base for γ-MnO
2
and PANI. The nanoparticles γ-MnO
2
is supported on the surface of CF and coated by PANI, which effectively improves the utilization rate of MnO
2
and PANI. It could be a promising material for supercapacitors applications. |
doi_str_mv | 10.1007/s10854-021-06989-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580594532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580594532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234x-a5989c43ef9fe376a4a33c799ba2fd26f639e1a37c48b2fce19190876f761f633</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GrAdWz-M9lZij-FartQcCGENCY6ZWYyJlOoz-V7-ExGR3Dn6sK93znccwA4xegcIyQnCaOSM4gIhkioUsHdHhhhLilkJXncByOkuISME3IIjlLaIIQEo-UIPK2i60w0fRXaIviid7E18b2woelCqnpXzK4uPj_gbbskk9X0bl40JjOVqYuqLVztbB-DfXVNZfMqbTsXremMrfoQ0zE48KZO7uR3jsHD1eX97AYultfz2XQBLaFsBw3PH1tGnVfeUSkMM5RaqdTaEP9MhBdUOWyotKxcE28dVlihUgovBc5HOgZng28Xw9vWpV5vwjbnqJMmvERcMU5JpshA2RhSis7rLlZNDqsx0t8t6qFFnVvUPy3qXRbRQZQy3L64-Gf9j-oLyq927g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580594532</pqid></control><display><type>article</type><title>Preparation of ternary composite CF@γ-MnO2/PANI material in electrochemical supercapacitors</title><source>Springer Link</source><creator>Zhu, Yuanqiang ; Xu, Hui ; Tang, Jing ; Jiang, Xudong ; Bao, Yuanhai ; Chen, Yong</creator><creatorcontrib>Zhu, Yuanqiang ; Xu, Hui ; Tang, Jing ; Jiang, Xudong ; Bao, Yuanhai ; Chen, Yong</creatorcontrib><description>In this paper, a ternary hybrid material carbon fiber/manganese dioxide/polyaniline (CF@γ-MnO
2
/PANI) is synthesized for its utility in supercapacitor application. γ-MnO
2
nanoparticles are loaded on the surface of CF under hydrothermal conditions to prepare CF@γ-MnO
2
. Subsequently, PANI in situ polymerized on the surface of CF@γ-MnO
2
to form CF@γ-MnO
2
/PANI ternary composite. The electrochemical performance of CF@γ-MnO
2
/PANI is investigated using cyclic voltammetry (CV), galvanostatic charge–discharge measurement (GCD), and electrochemical impedance spectroscopy (EIS). Compared with CF/PANI and PANI, the as-prepared ternary hybrid material exhibits the highest capacitance of 654.3 F g
−1
at a current density of 1 A g
−1
, its rate performance is 78.1% (10 A g
−1
), and 75.94% of the initial capacitance after 4000 charge–discharge cycles. The asymmetric supercapacitor shows a specific capacitance of 260 F g
−1
and high energy density 30.9 Wh kg
−1
at a power density of 750 W kg
−1
, good cycling stability by maintaining 73.2% initial capacitance after 5000 cycles. The good capacitive behaviors demonstrated that the low-cost CF provides an excellent base for γ-MnO
2
and PANI. The nanoparticles γ-MnO
2
is supported on the surface of CF and coated by PANI, which effectively improves the utilization rate of MnO
2
and PANI. It could be a promising material for supercapacitors applications.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-06989-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Capacitance ; Carbon fibers ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Discharge measurement ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Flux density ; Manganese dioxide ; Materials Science ; Nanoparticles ; Optical and Electronic Materials ; Polyanilines ; Supercapacitors</subject><ispartof>Journal of materials science. Materials in electronics, 2021-10, Vol.32 (20), p.25300-25317</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c234x-a5989c43ef9fe376a4a33c799ba2fd26f639e1a37c48b2fce19190876f761f633</citedby><cites>FETCH-LOGICAL-c234x-a5989c43ef9fe376a4a33c799ba2fd26f639e1a37c48b2fce19190876f761f633</cites><orcidid>0000-0003-4900-8794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Yuanqiang</creatorcontrib><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Tang, Jing</creatorcontrib><creatorcontrib>Jiang, Xudong</creatorcontrib><creatorcontrib>Bao, Yuanhai</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><title>Preparation of ternary composite CF@γ-MnO2/PANI material in electrochemical supercapacitors</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this paper, a ternary hybrid material carbon fiber/manganese dioxide/polyaniline (CF@γ-MnO
2
/PANI) is synthesized for its utility in supercapacitor application. γ-MnO
2
nanoparticles are loaded on the surface of CF under hydrothermal conditions to prepare CF@γ-MnO
2
. Subsequently, PANI in situ polymerized on the surface of CF@γ-MnO
2
to form CF@γ-MnO
2
/PANI ternary composite. The electrochemical performance of CF@γ-MnO
2
/PANI is investigated using cyclic voltammetry (CV), galvanostatic charge–discharge measurement (GCD), and electrochemical impedance spectroscopy (EIS). Compared with CF/PANI and PANI, the as-prepared ternary hybrid material exhibits the highest capacitance of 654.3 F g
−1
at a current density of 1 A g
−1
, its rate performance is 78.1% (10 A g
−1
), and 75.94% of the initial capacitance after 4000 charge–discharge cycles. The asymmetric supercapacitor shows a specific capacitance of 260 F g
−1
and high energy density 30.9 Wh kg
−1
at a power density of 750 W kg
−1
, good cycling stability by maintaining 73.2% initial capacitance after 5000 cycles. The good capacitive behaviors demonstrated that the low-cost CF provides an excellent base for γ-MnO
2
and PANI. The nanoparticles γ-MnO
2
is supported on the surface of CF and coated by PANI, which effectively improves the utilization rate of MnO
2
and PANI. It could be a promising material for supercapacitors applications.</description><subject>Capacitance</subject><subject>Carbon fibers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Discharge measurement</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Flux density</subject><subject>Manganese dioxide</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Polyanilines</subject><subject>Supercapacitors</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4GrAdWz-M9lZij-FartQcCGENCY6ZWYyJlOoz-V7-ExGR3Dn6sK93znccwA4xegcIyQnCaOSM4gIhkioUsHdHhhhLilkJXncByOkuISME3IIjlLaIIQEo-UIPK2i60w0fRXaIviid7E18b2woelCqnpXzK4uPj_gbbskk9X0bl40JjOVqYuqLVztbB-DfXVNZfMqbTsXremMrfoQ0zE48KZO7uR3jsHD1eX97AYultfz2XQBLaFsBw3PH1tGnVfeUSkMM5RaqdTaEP9MhBdUOWyotKxcE28dVlihUgovBc5HOgZng28Xw9vWpV5vwjbnqJMmvERcMU5JpshA2RhSis7rLlZNDqsx0t8t6qFFnVvUPy3qXRbRQZQy3L64-Gf9j-oLyq927g</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhu, Yuanqiang</creator><creator>Xu, Hui</creator><creator>Tang, Jing</creator><creator>Jiang, Xudong</creator><creator>Bao, Yuanhai</creator><creator>Chen, Yong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4900-8794</orcidid></search><sort><creationdate>20211001</creationdate><title>Preparation of ternary composite CF@γ-MnO2/PANI material in electrochemical supercapacitors</title><author>Zhu, Yuanqiang ; Xu, Hui ; Tang, Jing ; Jiang, Xudong ; Bao, Yuanhai ; Chen, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234x-a5989c43ef9fe376a4a33c799ba2fd26f639e1a37c48b2fce19190876f761f633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capacitance</topic><topic>Carbon fibers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Discharge measurement</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Flux density</topic><topic>Manganese dioxide</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Polyanilines</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yuanqiang</creatorcontrib><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Tang, Jing</creatorcontrib><creatorcontrib>Jiang, Xudong</creatorcontrib><creatorcontrib>Bao, Yuanhai</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yuanqiang</au><au>Xu, Hui</au><au>Tang, Jing</au><au>Jiang, Xudong</au><au>Bao, Yuanhai</au><au>Chen, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of ternary composite CF@γ-MnO2/PANI material in electrochemical supercapacitors</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>32</volume><issue>20</issue><spage>25300</spage><epage>25317</epage><pages>25300-25317</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this paper, a ternary hybrid material carbon fiber/manganese dioxide/polyaniline (CF@γ-MnO
2
/PANI) is synthesized for its utility in supercapacitor application. γ-MnO
2
nanoparticles are loaded on the surface of CF under hydrothermal conditions to prepare CF@γ-MnO
2
. Subsequently, PANI in situ polymerized on the surface of CF@γ-MnO
2
to form CF@γ-MnO
2
/PANI ternary composite. The electrochemical performance of CF@γ-MnO
2
/PANI is investigated using cyclic voltammetry (CV), galvanostatic charge–discharge measurement (GCD), and electrochemical impedance spectroscopy (EIS). Compared with CF/PANI and PANI, the as-prepared ternary hybrid material exhibits the highest capacitance of 654.3 F g
−1
at a current density of 1 A g
−1
, its rate performance is 78.1% (10 A g
−1
), and 75.94% of the initial capacitance after 4000 charge–discharge cycles. The asymmetric supercapacitor shows a specific capacitance of 260 F g
−1
and high energy density 30.9 Wh kg
−1
at a power density of 750 W kg
−1
, good cycling stability by maintaining 73.2% initial capacitance after 5000 cycles. The good capacitive behaviors demonstrated that the low-cost CF provides an excellent base for γ-MnO
2
and PANI. The nanoparticles γ-MnO
2
is supported on the surface of CF and coated by PANI, which effectively improves the utilization rate of MnO
2
and PANI. It could be a promising material for supercapacitors applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-06989-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4900-8794</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-10, Vol.32 (20), p.25300-25317 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2580594532 |
source | Springer Link |
subjects | Capacitance Carbon fibers Characterization and Evaluation of Materials Chemistry and Materials Science Discharge measurement Electrochemical analysis Electrochemical impedance spectroscopy Flux density Manganese dioxide Materials Science Nanoparticles Optical and Electronic Materials Polyanilines Supercapacitors |
title | Preparation of ternary composite CF@γ-MnO2/PANI material in electrochemical supercapacitors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20ternary%20composite%20CF@%CE%B3-MnO2/PANI%20material%20in%20electrochemical%20supercapacitors&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhu,%20Yuanqiang&rft.date=2021-10-01&rft.volume=32&rft.issue=20&rft.spage=25300&rft.epage=25317&rft.pages=25300-25317&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-06989-x&rft_dat=%3Cproquest_cross%3E2580594532%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c234x-a5989c43ef9fe376a4a33c799ba2fd26f639e1a37c48b2fce19190876f761f633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2580594532&rft_id=info:pmid/&rfr_iscdi=true |