Loading…
Monomiality principle, Sheffer-type polynomials and the normal ordering problem
We solve the boson normal ordering problem for (q(a†)a + v(a†))n with arbitrary functions q(x) and v(x) and integer n, where a and a† are boson annihilation and creation operators, satisfying [a, a†] 1. This consequently provides the solution for the exponential eλ(q(a†)a + v(a†)) generalizing the s...
Saved in:
Published in: | Journal of physics. Conference series 2006-02, Vol.30 (1), p.86-97 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c391t-909ac8ab5ce9c379f3ca4d1d0f113f63325edff81794147f0a5bf3d6823b27423 |
---|---|
cites | cdi_FETCH-LOGICAL-c391t-909ac8ab5ce9c379f3ca4d1d0f113f63325edff81794147f0a5bf3d6823b27423 |
container_end_page | 97 |
container_issue | 1 |
container_start_page | 86 |
container_title | Journal of physics. Conference series |
container_volume | 30 |
creator | Penson, K A Blasiak, P Dattoli, G Duchamp, G H E Horzela, A Solomon, A I |
description | We solve the boson normal ordering problem for (q(a†)a + v(a†))n with arbitrary functions q(x) and v(x) and integer n, where a and a† are boson annihilation and creation operators, satisfying [a, a†] 1. This consequently provides the solution for the exponential eλ(q(a†)a + v(a†)) generalizing the shift operator. In the course of these considerations we define and explore the monomiality principle and find its representations. We exploit the properties of Sheffer-type polynomials which constitute the inherent structure of this problem. In the end we give some examples illustrating the utility of the method and point out the relation to combinatorial structures. |
doi_str_mv | 10.1088/1742-6596/30/1/012 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_journals_2580729927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580729927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-909ac8ab5ce9c379f3ca4d1d0f113f63325edff81794147f0a5bf3d6823b27423</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-AU8BT4K1SaZtmqMsfoGyB_Uc0ny4Xdqmpt1D_71ZKiLowbnMMDzvvMyL0Dkl15SUZUp5xpIiF0UKJKUpoewALb6Xhz_mY3QyDFtCIBZfoPWz73xbq6YeJ9yHutN139gr_LKxztmQjFNvce-baaYGrDqDx43FnQ-tarAPxkbVe9T6qrHtKTpyEbNnX32J3u5uX1cPydP6_nF185RoEHRMBBFKl6rKtRUauHCgVWaoIY5ScAUAy61xrqRcZDTjjqi8cmCKkkHF4iuwRBfz3ej7sbPDKLd-F7poKVleEs6EYDxSbKZ08MMQrJPxxVaFSVIi98HJfS5yn4uEuJExuChKZlHt-__xl3_wvzjZGwefbJR7Uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580729927</pqid></control><display><type>article</type><title>Monomiality principle, Sheffer-type polynomials and the normal ordering problem</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Penson, K A ; Blasiak, P ; Dattoli, G ; Duchamp, G H E ; Horzela, A ; Solomon, A I</creator><creatorcontrib>Penson, K A ; Blasiak, P ; Dattoli, G ; Duchamp, G H E ; Horzela, A ; Solomon, A I</creatorcontrib><description>We solve the boson normal ordering problem for (q(a†)a + v(a†))n with arbitrary functions q(x) and v(x) and integer n, where a and a† are boson annihilation and creation operators, satisfying [a, a†] 1. This consequently provides the solution for the exponential eλ(q(a†)a + v(a†)) generalizing the shift operator. In the course of these considerations we define and explore the monomiality principle and find its representations. We exploit the properties of Sheffer-type polynomials which constitute the inherent structure of this problem. In the end we give some examples illustrating the utility of the method and point out the relation to combinatorial structures.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/30/1/012</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Combinatorial analysis ; Mathematical analysis ; Physics ; Polynomials</subject><ispartof>Journal of physics. Conference series, 2006-02, Vol.30 (1), p.86-97</ispartof><rights>Copyright IOP Publishing Feb 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-909ac8ab5ce9c379f3ca4d1d0f113f63325edff81794147f0a5bf3d6823b27423</citedby><cites>FETCH-LOGICAL-c391t-909ac8ab5ce9c379f3ca4d1d0f113f63325edff81794147f0a5bf3d6823b27423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2580729927?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Penson, K A</creatorcontrib><creatorcontrib>Blasiak, P</creatorcontrib><creatorcontrib>Dattoli, G</creatorcontrib><creatorcontrib>Duchamp, G H E</creatorcontrib><creatorcontrib>Horzela, A</creatorcontrib><creatorcontrib>Solomon, A I</creatorcontrib><title>Monomiality principle, Sheffer-type polynomials and the normal ordering problem</title><title>Journal of physics. Conference series</title><description>We solve the boson normal ordering problem for (q(a†)a + v(a†))n with arbitrary functions q(x) and v(x) and integer n, where a and a† are boson annihilation and creation operators, satisfying [a, a†] 1. This consequently provides the solution for the exponential eλ(q(a†)a + v(a†)) generalizing the shift operator. In the course of these considerations we define and explore the monomiality principle and find its representations. We exploit the properties of Sheffer-type polynomials which constitute the inherent structure of this problem. In the end we give some examples illustrating the utility of the method and point out the relation to combinatorial structures.</description><subject>Combinatorial analysis</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Polynomials</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkE1LxDAQhoMouK7-AU8BT4K1SaZtmqMsfoGyB_Uc0ny4Xdqmpt1D_71ZKiLowbnMMDzvvMyL0Dkl15SUZUp5xpIiF0UKJKUpoewALb6Xhz_mY3QyDFtCIBZfoPWz73xbq6YeJ9yHutN139gr_LKxztmQjFNvce-baaYGrDqDx43FnQ-tarAPxkbVe9T6qrHtKTpyEbNnX32J3u5uX1cPydP6_nF185RoEHRMBBFKl6rKtRUauHCgVWaoIY5ScAUAy61xrqRcZDTjjqi8cmCKkkHF4iuwRBfz3ej7sbPDKLd-F7poKVleEs6EYDxSbKZ08MMQrJPxxVaFSVIi98HJfS5yn4uEuJExuChKZlHt-__xl3_wvzjZGwefbJR7Uw</recordid><startdate>20060228</startdate><enddate>20060228</enddate><creator>Penson, K A</creator><creator>Blasiak, P</creator><creator>Dattoli, G</creator><creator>Duchamp, G H E</creator><creator>Horzela, A</creator><creator>Solomon, A I</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20060228</creationdate><title>Monomiality principle, Sheffer-type polynomials and the normal ordering problem</title><author>Penson, K A ; Blasiak, P ; Dattoli, G ; Duchamp, G H E ; Horzela, A ; Solomon, A I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-909ac8ab5ce9c379f3ca4d1d0f113f63325edff81794147f0a5bf3d6823b27423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Combinatorial analysis</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penson, K A</creatorcontrib><creatorcontrib>Blasiak, P</creatorcontrib><creatorcontrib>Dattoli, G</creatorcontrib><creatorcontrib>Duchamp, G H E</creatorcontrib><creatorcontrib>Horzela, A</creatorcontrib><creatorcontrib>Solomon, A I</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penson, K A</au><au>Blasiak, P</au><au>Dattoli, G</au><au>Duchamp, G H E</au><au>Horzela, A</au><au>Solomon, A I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monomiality principle, Sheffer-type polynomials and the normal ordering problem</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2006-02-28</date><risdate>2006</risdate><volume>30</volume><issue>1</issue><spage>86</spage><epage>97</epage><pages>86-97</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>We solve the boson normal ordering problem for (q(a†)a + v(a†))n with arbitrary functions q(x) and v(x) and integer n, where a and a† are boson annihilation and creation operators, satisfying [a, a†] 1. This consequently provides the solution for the exponential eλ(q(a†)a + v(a†)) generalizing the shift operator. In the course of these considerations we define and explore the monomiality principle and find its representations. We exploit the properties of Sheffer-type polynomials which constitute the inherent structure of this problem. In the end we give some examples illustrating the utility of the method and point out the relation to combinatorial structures.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/30/1/012</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6596 |
ispartof | Journal of physics. Conference series, 2006-02, Vol.30 (1), p.86-97 |
issn | 1742-6596 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2580729927 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Combinatorial analysis Mathematical analysis Physics Polynomials |
title | Monomiality principle, Sheffer-type polynomials and the normal ordering problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monomiality%20principle,%20Sheffer-type%20polynomials%20and%20the%20normal%20ordering%20problem&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Penson,%20K%20A&rft.date=2006-02-28&rft.volume=30&rft.issue=1&rft.spage=86&rft.epage=97&rft.pages=86-97&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/30/1/012&rft_dat=%3Cproquest_iop_p%3E2580729927%3C/proquest_iop_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-909ac8ab5ce9c379f3ca4d1d0f113f63325edff81794147f0a5bf3d6823b27423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2580729927&rft_id=info:pmid/&rfr_iscdi=true |