Loading…
Macroradical enables electrical conduction in epoxy thermoset
A single material combining the unique properties of stable radical moieties with the versatility of the epoxy polymer is presented. Electrical conduction for any material is mostly achieved using metals, metal-organics, or organic conductors with extended π-orbital frameworks. However, in this comb...
Saved in:
Published in: | Polymer (Guilford) 2021-09, Vol.230, p.124046, Article 124046 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-904ade1756b6f21a352a42d9ab34f886c1c154b1b8556980934b84b89d753b023 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-904ade1756b6f21a352a42d9ab34f886c1c154b1b8556980934b84b89d753b023 |
container_end_page | |
container_issue | |
container_start_page | 124046 |
container_title | Polymer (Guilford) |
container_volume | 230 |
creator | Capricho, Jaworski C. Saubern, Simon Best, Stephen P. Maksimovic, Jovan Gupta, Akhil Juodkazis, Saulius Fox, Bronwyn Louise Hameed, Nishar |
description | A single material combining the unique properties of stable radical moieties with the versatility of the epoxy polymer is presented. Electrical conduction for any material is mostly achieved using metals, metal-organics, or organic conductors with extended π-orbital frameworks. However, in this combined material, intrinsic electronic conduction is enabled into the non-conjugated and amorphous epoxy thermoset. Furthermore, using the classical epoxy-amine curing ensures that only a highly crosslinked network with a rigid topology is formed. This design is a departure from other macroradicals with flexible backbones. The hole mobility of the neat macroradical epoxy thermoset is quantified to be ~3.1 × 10−6 cm2 V−1 s−1, already in the regime of traditional semiconductors. This electronic conduction can only be a result of radical-toradical hopping because the thermoset still retains active radicals after polymerization with a short alkyl amine when measured by electron spin resonance (EPR) spectroscopy. In the scientific literature, the synthesis of macroradicals using the direct approach is scarce. Herein, to obtain the novel radical epoxy monomer, a very mature yet simple amino-epoxide chemistry is employed to prepare a diglycidylamine based on 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl using the direct approach. EPR spectroscopy also reveals that the radical center remained stable even after epoxidation of the precursor. Consequently, this effort offers a change in thinking on how electronic conduction in open shell polymers operates especially on a rigid backbone and paves for a reassessment of the traditional epoxy polymer as enduring materials for frontier applications.
[Display omitted]
•Epoxides are combined with a stable nitroxide radical in a novel epoxy monomer.•This monomer is polymerizable with diamines forming highly crosslinked networks.•Space charge limited current estimates hole mobility as ~3.1 × 10−6 cm2 V−1s−1.•Pendant radicals transform epoxies from an insulator to an intrinsic semiconductor. |
doi_str_mv | 10.1016/j.polymer.2021.124046 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580731225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386121006698</els_id><sourcerecordid>2580731225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-904ade1756b6f21a352a42d9ab34f886c1c154b1b8556980934b84b89d753b023</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BKHguTUzSdr0ICLiP1jxoueQpimmdJs16Yr77c3avQsDAzPvzfB-hFwCLYBCed0XGz_s1jYUSBEKQE55eUQWICuWI9ZwTBaUMsyZLOGUnMXYU0pRIF-Qm1dtgg-6dUYPmR11M9iY2cGaKfyNjB_brZmcHzM3Znbjf3bZ9GnD2kc7nZOTTg_RXhz6knw8PrzfP-ert6eX-7tVbhirprymXLcWKlE2ZYegmUDNsa11w3gnZWnAgOANNFKIspa0ZryRqeq2EqyhyJbkar67Cf5ra-Oker8NY3qpUEhaMUAUSSVmVUoUY7Cd2gS31mGngKo9KdWrAym1J6VmUsl3O_tsivDt0jYaZ0djWxcSB9V698-FX4gQc28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580731225</pqid></control><display><type>article</type><title>Macroradical enables electrical conduction in epoxy thermoset</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Capricho, Jaworski C. ; Saubern, Simon ; Best, Stephen P. ; Maksimovic, Jovan ; Gupta, Akhil ; Juodkazis, Saulius ; Fox, Bronwyn Louise ; Hameed, Nishar</creator><creatorcontrib>Capricho, Jaworski C. ; Saubern, Simon ; Best, Stephen P. ; Maksimovic, Jovan ; Gupta, Akhil ; Juodkazis, Saulius ; Fox, Bronwyn Louise ; Hameed, Nishar</creatorcontrib><description>A single material combining the unique properties of stable radical moieties with the versatility of the epoxy polymer is presented. Electrical conduction for any material is mostly achieved using metals, metal-organics, or organic conductors with extended π-orbital frameworks. However, in this combined material, intrinsic electronic conduction is enabled into the non-conjugated and amorphous epoxy thermoset. Furthermore, using the classical epoxy-amine curing ensures that only a highly crosslinked network with a rigid topology is formed. This design is a departure from other macroradicals with flexible backbones. The hole mobility of the neat macroradical epoxy thermoset is quantified to be ~3.1 × 10−6 cm2 V−1 s−1, already in the regime of traditional semiconductors. This electronic conduction can only be a result of radical-toradical hopping because the thermoset still retains active radicals after polymerization with a short alkyl amine when measured by electron spin resonance (EPR) spectroscopy. In the scientific literature, the synthesis of macroradicals using the direct approach is scarce. Herein, to obtain the novel radical epoxy monomer, a very mature yet simple amino-epoxide chemistry is employed to prepare a diglycidylamine based on 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl using the direct approach. EPR spectroscopy also reveals that the radical center remained stable even after epoxidation of the precursor. Consequently, this effort offers a change in thinking on how electronic conduction in open shell polymers operates especially on a rigid backbone and paves for a reassessment of the traditional epoxy polymer as enduring materials for frontier applications.
[Display omitted]
•Epoxides are combined with a stable nitroxide radical in a novel epoxy monomer.•This monomer is polymerizable with diamines forming highly crosslinked networks.•Space charge limited current estimates hole mobility as ~3.1 × 10−6 cm2 V−1s−1.•Pendant radicals transform epoxies from an insulator to an intrinsic semiconductor.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2021.124046</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Amorphous materials ; Batteries ; Conduction ; Conductivity ; Conductors ; Cross-linking ; Electrical conduction ; Electron paramagnetic resonance ; Electron spin ; Electron spin resonance ; Electronics industry ; Epoxidation ; Hole mobility ; Metals ; Mobility ; Nitroxides ; Polymers ; Resins ; Solid-state electronics ; Spectroscopy ; Spin resonance ; Thermosetting resins ; Topology</subject><ispartof>Polymer (Guilford), 2021-09, Vol.230, p.124046, Article 124046</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 16, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-904ade1756b6f21a352a42d9ab34f886c1c154b1b8556980934b84b89d753b023</citedby><cites>FETCH-LOGICAL-c337t-904ade1756b6f21a352a42d9ab34f886c1c154b1b8556980934b84b89d753b023</cites><orcidid>0000-0002-9399-3560 ; 0000-0003-2847-2483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Capricho, Jaworski C.</creatorcontrib><creatorcontrib>Saubern, Simon</creatorcontrib><creatorcontrib>Best, Stephen P.</creatorcontrib><creatorcontrib>Maksimovic, Jovan</creatorcontrib><creatorcontrib>Gupta, Akhil</creatorcontrib><creatorcontrib>Juodkazis, Saulius</creatorcontrib><creatorcontrib>Fox, Bronwyn Louise</creatorcontrib><creatorcontrib>Hameed, Nishar</creatorcontrib><title>Macroradical enables electrical conduction in epoxy thermoset</title><title>Polymer (Guilford)</title><description>A single material combining the unique properties of stable radical moieties with the versatility of the epoxy polymer is presented. Electrical conduction for any material is mostly achieved using metals, metal-organics, or organic conductors with extended π-orbital frameworks. However, in this combined material, intrinsic electronic conduction is enabled into the non-conjugated and amorphous epoxy thermoset. Furthermore, using the classical epoxy-amine curing ensures that only a highly crosslinked network with a rigid topology is formed. This design is a departure from other macroradicals with flexible backbones. The hole mobility of the neat macroradical epoxy thermoset is quantified to be ~3.1 × 10−6 cm2 V−1 s−1, already in the regime of traditional semiconductors. This electronic conduction can only be a result of radical-toradical hopping because the thermoset still retains active radicals after polymerization with a short alkyl amine when measured by electron spin resonance (EPR) spectroscopy. In the scientific literature, the synthesis of macroradicals using the direct approach is scarce. Herein, to obtain the novel radical epoxy monomer, a very mature yet simple amino-epoxide chemistry is employed to prepare a diglycidylamine based on 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl using the direct approach. EPR spectroscopy also reveals that the radical center remained stable even after epoxidation of the precursor. Consequently, this effort offers a change in thinking on how electronic conduction in open shell polymers operates especially on a rigid backbone and paves for a reassessment of the traditional epoxy polymer as enduring materials for frontier applications.
[Display omitted]
•Epoxides are combined with a stable nitroxide radical in a novel epoxy monomer.•This monomer is polymerizable with diamines forming highly crosslinked networks.•Space charge limited current estimates hole mobility as ~3.1 × 10−6 cm2 V−1s−1.•Pendant radicals transform epoxies from an insulator to an intrinsic semiconductor.</description><subject>Amorphous materials</subject><subject>Batteries</subject><subject>Conduction</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Cross-linking</subject><subject>Electrical conduction</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electron spin resonance</subject><subject>Electronics industry</subject><subject>Epoxidation</subject><subject>Hole mobility</subject><subject>Metals</subject><subject>Mobility</subject><subject>Nitroxides</subject><subject>Polymers</subject><subject>Resins</subject><subject>Solid-state electronics</subject><subject>Spectroscopy</subject><subject>Spin resonance</subject><subject>Thermosetting resins</subject><subject>Topology</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BKHguTUzSdr0ICLiP1jxoueQpimmdJs16Yr77c3avQsDAzPvzfB-hFwCLYBCed0XGz_s1jYUSBEKQE55eUQWICuWI9ZwTBaUMsyZLOGUnMXYU0pRIF-Qm1dtgg-6dUYPmR11M9iY2cGaKfyNjB_brZmcHzM3Znbjf3bZ9GnD2kc7nZOTTg_RXhz6knw8PrzfP-ert6eX-7tVbhirprymXLcWKlE2ZYegmUDNsa11w3gnZWnAgOANNFKIspa0ZryRqeq2EqyhyJbkar67Cf5ra-Oker8NY3qpUEhaMUAUSSVmVUoUY7Cd2gS31mGngKo9KdWrAym1J6VmUsl3O_tsivDt0jYaZ0djWxcSB9V698-FX4gQc28</recordid><startdate>20210916</startdate><enddate>20210916</enddate><creator>Capricho, Jaworski C.</creator><creator>Saubern, Simon</creator><creator>Best, Stephen P.</creator><creator>Maksimovic, Jovan</creator><creator>Gupta, Akhil</creator><creator>Juodkazis, Saulius</creator><creator>Fox, Bronwyn Louise</creator><creator>Hameed, Nishar</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-9399-3560</orcidid><orcidid>https://orcid.org/0000-0003-2847-2483</orcidid></search><sort><creationdate>20210916</creationdate><title>Macroradical enables electrical conduction in epoxy thermoset</title><author>Capricho, Jaworski C. ; Saubern, Simon ; Best, Stephen P. ; Maksimovic, Jovan ; Gupta, Akhil ; Juodkazis, Saulius ; Fox, Bronwyn Louise ; Hameed, Nishar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-904ade1756b6f21a352a42d9ab34f886c1c154b1b8556980934b84b89d753b023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amorphous materials</topic><topic>Batteries</topic><topic>Conduction</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Cross-linking</topic><topic>Electrical conduction</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electron spin resonance</topic><topic>Electronics industry</topic><topic>Epoxidation</topic><topic>Hole mobility</topic><topic>Metals</topic><topic>Mobility</topic><topic>Nitroxides</topic><topic>Polymers</topic><topic>Resins</topic><topic>Solid-state electronics</topic><topic>Spectroscopy</topic><topic>Spin resonance</topic><topic>Thermosetting resins</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capricho, Jaworski C.</creatorcontrib><creatorcontrib>Saubern, Simon</creatorcontrib><creatorcontrib>Best, Stephen P.</creatorcontrib><creatorcontrib>Maksimovic, Jovan</creatorcontrib><creatorcontrib>Gupta, Akhil</creatorcontrib><creatorcontrib>Juodkazis, Saulius</creatorcontrib><creatorcontrib>Fox, Bronwyn Louise</creatorcontrib><creatorcontrib>Hameed, Nishar</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capricho, Jaworski C.</au><au>Saubern, Simon</au><au>Best, Stephen P.</au><au>Maksimovic, Jovan</au><au>Gupta, Akhil</au><au>Juodkazis, Saulius</au><au>Fox, Bronwyn Louise</au><au>Hameed, Nishar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macroradical enables electrical conduction in epoxy thermoset</atitle><jtitle>Polymer (Guilford)</jtitle><date>2021-09-16</date><risdate>2021</risdate><volume>230</volume><spage>124046</spage><pages>124046-</pages><artnum>124046</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>A single material combining the unique properties of stable radical moieties with the versatility of the epoxy polymer is presented. Electrical conduction for any material is mostly achieved using metals, metal-organics, or organic conductors with extended π-orbital frameworks. However, in this combined material, intrinsic electronic conduction is enabled into the non-conjugated and amorphous epoxy thermoset. Furthermore, using the classical epoxy-amine curing ensures that only a highly crosslinked network with a rigid topology is formed. This design is a departure from other macroradicals with flexible backbones. The hole mobility of the neat macroradical epoxy thermoset is quantified to be ~3.1 × 10−6 cm2 V−1 s−1, already in the regime of traditional semiconductors. This electronic conduction can only be a result of radical-toradical hopping because the thermoset still retains active radicals after polymerization with a short alkyl amine when measured by electron spin resonance (EPR) spectroscopy. In the scientific literature, the synthesis of macroradicals using the direct approach is scarce. Herein, to obtain the novel radical epoxy monomer, a very mature yet simple amino-epoxide chemistry is employed to prepare a diglycidylamine based on 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl using the direct approach. EPR spectroscopy also reveals that the radical center remained stable even after epoxidation of the precursor. Consequently, this effort offers a change in thinking on how electronic conduction in open shell polymers operates especially on a rigid backbone and paves for a reassessment of the traditional epoxy polymer as enduring materials for frontier applications.
[Display omitted]
•Epoxides are combined with a stable nitroxide radical in a novel epoxy monomer.•This monomer is polymerizable with diamines forming highly crosslinked networks.•Space charge limited current estimates hole mobility as ~3.1 × 10−6 cm2 V−1s−1.•Pendant radicals transform epoxies from an insulator to an intrinsic semiconductor.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2021.124046</doi><orcidid>https://orcid.org/0000-0002-9399-3560</orcidid><orcidid>https://orcid.org/0000-0003-2847-2483</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2021-09, Vol.230, p.124046, Article 124046 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_2580731225 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Amorphous materials Batteries Conduction Conductivity Conductors Cross-linking Electrical conduction Electron paramagnetic resonance Electron spin Electron spin resonance Electronics industry Epoxidation Hole mobility Metals Mobility Nitroxides Polymers Resins Solid-state electronics Spectroscopy Spin resonance Thermosetting resins Topology |
title | Macroradical enables electrical conduction in epoxy thermoset |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A08%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macroradical%20enables%20electrical%20conduction%20in%20epoxy%20thermoset&rft.jtitle=Polymer%20(Guilford)&rft.au=Capricho,%20Jaworski%20C.&rft.date=2021-09-16&rft.volume=230&rft.spage=124046&rft.pages=124046-&rft.artnum=124046&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2021.124046&rft_dat=%3Cproquest_cross%3E2580731225%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-904ade1756b6f21a352a42d9ab34f886c1c154b1b8556980934b84b89d753b023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2580731225&rft_id=info:pmid/&rfr_iscdi=true |