Loading…

A comparative assessment of the accuracies of split-window algorithms for retrieving of land surface temperature using Landsat 8 data

Land surface temperature (LST) is one of the most important physical parameters examined in modeling the land surface processes. There are several algorithms for estimating the LST using satellite imagery. The present study aims to evaluate the accuracy of ten split-window algorithms in estimating t...

Full description

Saved in:
Bibliographic Details
Published in:Modeling earth systems and environment 2021-11, Vol.7 (4), p.2267-2281
Main Authors: Arabi Aliabad, Fahime, Zare, Mohammad, Ghafarian Malamiri, Hamidreza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Land surface temperature (LST) is one of the most important physical parameters examined in modeling the land surface processes. There are several algorithms for estimating the LST using satellite imagery. The present study aims to evaluate the accuracy of ten split-window algorithms in estimating the LST using Landsat 8 images in the arid lands. The split-window algorithms were validated by employing the two methods of temperature-based (T-based) and cross-validation. In the T-based validation method, soil temperatures at depth of 5 cm within three meteorological stations were used at 6:30, 12:30, and 18:30 (local time). The land surface temperature was predicted at the moment when satellite overpass by implementing Fourier series. Results of the T-based validation indicated that the Li and Coll algorithms with RMSE values of 5.83 and 8.94 and MADE of 4.60 and 8.04 °C, have the lowest and highest errors, respectively. To conduct the cross-validation and prepare the RMSE statistical index images, the LST images associated with MODIS sensor and those of various split-window algorithms obtained via Landsat images were compared. Results of land-use analysis showed that areas with the RMSE of more than 5 °C, are located in valleys and regions with high humidity. The results of cross-validation showed that the Li and Jiménez’s split-window algorithms are the most accurate methods with RMSEs of 3.65 and 3.57 °C, respectively. The Parata, Price, Sobrino, Uliverii, Mcclain, Vidal, Kerr, and Coll algorithms are in the next grades, respectively. In general, using atmospheric water vapor increases the accuracy of retrieval LST in a split-window algorithm.
ISSN:2363-6203
2363-6211
DOI:10.1007/s40808-020-01007-1