Loading…

Realisation of the double sweep method by using a Sleptsov net

The present article is focused on the application of Sleptsov net (SN) for solving system of linear algebraic equations with a tridiagonal matrix. SN, which implements the double sweep algorithm for solving a system of linear equations with a tridiagonal matrix, is constructed. The work of the const...

Full description

Saved in:
Bibliographic Details
Published in:International journal of parallel, emergent and distributed systems emergent and distributed systems, 2021-11, Vol.36 (6), p.516-534
Main Authors: Kostikov, Alexander A., Zaitsev, Nikolay D., Subotin, Oleg V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-4b349171f1a2e6ab59962efc79a0ee69af4380e2c438292675dd778d253e952f3
cites cdi_FETCH-LOGICAL-c338t-4b349171f1a2e6ab59962efc79a0ee69af4380e2c438292675dd778d253e952f3
container_end_page 534
container_issue 6
container_start_page 516
container_title International journal of parallel, emergent and distributed systems
container_volume 36
creator Kostikov, Alexander A.
Zaitsev, Nikolay D.
Subotin, Oleg V.
description The present article is focused on the application of Sleptsov net (SN) for solving system of linear algebraic equations with a tridiagonal matrix. SN, which implements the double sweep algorithm for solving a system of linear equations with a tridiagonal matrix, is constructed. The work of the constructed network is considered when solving a specific example. The number of operations carried out by the net in performing computations has been calculated and the performance of the parallel double sweep method implemented by the net is compared with the sequential double sweep method. We also consider representation of integer and real numbers by a SN and implementation of basic arithmetic operations over these numbers because the implementation of the algorithm requires floating point operations.
doi_str_mv 10.1080/17445760.2021.1945054
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581110260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581110260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-4b349171f1a2e6ab59962efc79a0ee69af4380e2c438292675dd778d253e952f3</originalsourceid><addsrcrecordid>eNp9kF1LwzAYhYMoOKc_QQh43Zmk-WhuRBl-wUDw4zqk7RvX0TU1SR3793ZseunVObycc154ELqkZEZJQa6p4lwoSWaMMDqjmgsi-BGa7O6ZUEof_3lJTtFZjCtCOONSTdDNK9i2iTY1vsPe4bQEXPuhbAHHDUCP15CWvsblFg-x6T6xxW8t9Cn6b9xBOkcnzrYRLg46RR8P9-_zp2zx8vg8v1tkVZ4XKeNlzjVV1FHLQNpSaC0ZuEppSwCkto7nBQFWjcI0k0rUtVJFzUQOWjCXT9HVfrcP_muAmMzKD6EbXxomCkopYZKMKbFPVcHHGMCZPjRrG7aGErNDZX5RmR0qc0A19m73vaZzPqztxoe2NsluWx9csF3VRJP_P_EDj0RuPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581110260</pqid></control><display><type>article</type><title>Realisation of the double sweep method by using a Sleptsov net</title><source>Taylor and Francis Science and Technology Collection</source><creator>Kostikov, Alexander A. ; Zaitsev, Nikolay D. ; Subotin, Oleg V.</creator><creatorcontrib>Kostikov, Alexander A. ; Zaitsev, Nikolay D. ; Subotin, Oleg V.</creatorcontrib><description>The present article is focused on the application of Sleptsov net (SN) for solving system of linear algebraic equations with a tridiagonal matrix. SN, which implements the double sweep algorithm for solving a system of linear equations with a tridiagonal matrix, is constructed. The work of the constructed network is considered when solving a specific example. The number of operations carried out by the net in performing computations has been calculated and the performance of the parallel double sweep method implemented by the net is compared with the sequential double sweep method. We also consider representation of integer and real numbers by a SN and implementation of basic arithmetic operations over these numbers because the implementation of the algorithm requires floating point operations.</description><identifier>ISSN: 1744-5760</identifier><identifier>EISSN: 1744-5779</identifier><identifier>DOI: 10.1080/17445760.2021.1945054</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Algorithms ; Floating point arithmetic ; Linear algebra ; Linear equations ; Mathematical analysis ; Real numbers</subject><ispartof>International journal of parallel, emergent and distributed systems, 2021-11, Vol.36 (6), p.516-534</ispartof><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-4b349171f1a2e6ab59962efc79a0ee69af4380e2c438292675dd778d253e952f3</citedby><cites>FETCH-LOGICAL-c338t-4b349171f1a2e6ab59962efc79a0ee69af4380e2c438292675dd778d253e952f3</cites><orcidid>0000-0002-6095-5840 ; 0000-0003-3503-4836 ; 0000-0002-7547-5284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kostikov, Alexander A.</creatorcontrib><creatorcontrib>Zaitsev, Nikolay D.</creatorcontrib><creatorcontrib>Subotin, Oleg V.</creatorcontrib><title>Realisation of the double sweep method by using a Sleptsov net</title><title>International journal of parallel, emergent and distributed systems</title><description>The present article is focused on the application of Sleptsov net (SN) for solving system of linear algebraic equations with a tridiagonal matrix. SN, which implements the double sweep algorithm for solving a system of linear equations with a tridiagonal matrix, is constructed. The work of the constructed network is considered when solving a specific example. The number of operations carried out by the net in performing computations has been calculated and the performance of the parallel double sweep method implemented by the net is compared with the sequential double sweep method. We also consider representation of integer and real numbers by a SN and implementation of basic arithmetic operations over these numbers because the implementation of the algorithm requires floating point operations.</description><subject>Algorithms</subject><subject>Floating point arithmetic</subject><subject>Linear algebra</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Real numbers</subject><issn>1744-5760</issn><issn>1744-5779</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAYhYMoOKc_QQh43Zmk-WhuRBl-wUDw4zqk7RvX0TU1SR3793ZseunVObycc154ELqkZEZJQa6p4lwoSWaMMDqjmgsi-BGa7O6ZUEof_3lJTtFZjCtCOONSTdDNK9i2iTY1vsPe4bQEXPuhbAHHDUCP15CWvsblFg-x6T6xxW8t9Cn6b9xBOkcnzrYRLg46RR8P9-_zp2zx8vg8v1tkVZ4XKeNlzjVV1FHLQNpSaC0ZuEppSwCkto7nBQFWjcI0k0rUtVJFzUQOWjCXT9HVfrcP_muAmMzKD6EbXxomCkopYZKMKbFPVcHHGMCZPjRrG7aGErNDZX5RmR0qc0A19m73vaZzPqztxoe2NsluWx9csF3VRJP_P_EDj0RuPw</recordid><startdate>20211102</startdate><enddate>20211102</enddate><creator>Kostikov, Alexander A.</creator><creator>Zaitsev, Nikolay D.</creator><creator>Subotin, Oleg V.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6095-5840</orcidid><orcidid>https://orcid.org/0000-0003-3503-4836</orcidid><orcidid>https://orcid.org/0000-0002-7547-5284</orcidid></search><sort><creationdate>20211102</creationdate><title>Realisation of the double sweep method by using a Sleptsov net</title><author>Kostikov, Alexander A. ; Zaitsev, Nikolay D. ; Subotin, Oleg V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-4b349171f1a2e6ab59962efc79a0ee69af4380e2c438292675dd778d253e952f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Floating point arithmetic</topic><topic>Linear algebra</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Real numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kostikov, Alexander A.</creatorcontrib><creatorcontrib>Zaitsev, Nikolay D.</creatorcontrib><creatorcontrib>Subotin, Oleg V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of parallel, emergent and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kostikov, Alexander A.</au><au>Zaitsev, Nikolay D.</au><au>Subotin, Oleg V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realisation of the double sweep method by using a Sleptsov net</atitle><jtitle>International journal of parallel, emergent and distributed systems</jtitle><date>2021-11-02</date><risdate>2021</risdate><volume>36</volume><issue>6</issue><spage>516</spage><epage>534</epage><pages>516-534</pages><issn>1744-5760</issn><eissn>1744-5779</eissn><abstract>The present article is focused on the application of Sleptsov net (SN) for solving system of linear algebraic equations with a tridiagonal matrix. SN, which implements the double sweep algorithm for solving a system of linear equations with a tridiagonal matrix, is constructed. The work of the constructed network is considered when solving a specific example. The number of operations carried out by the net in performing computations has been calculated and the performance of the parallel double sweep method implemented by the net is compared with the sequential double sweep method. We also consider representation of integer and real numbers by a SN and implementation of basic arithmetic operations over these numbers because the implementation of the algorithm requires floating point operations.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/17445760.2021.1945054</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6095-5840</orcidid><orcidid>https://orcid.org/0000-0003-3503-4836</orcidid><orcidid>https://orcid.org/0000-0002-7547-5284</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-5760
ispartof International journal of parallel, emergent and distributed systems, 2021-11, Vol.36 (6), p.516-534
issn 1744-5760
1744-5779
language eng
recordid cdi_proquest_journals_2581110260
source Taylor and Francis Science and Technology Collection
subjects Algorithms
Floating point arithmetic
Linear algebra
Linear equations
Mathematical analysis
Real numbers
title Realisation of the double sweep method by using a Sleptsov net
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realisation%20of%20the%20double%20sweep%20method%20by%20using%20a%20Sleptsov%20net&rft.jtitle=International%20journal%20of%20parallel,%20emergent%20and%20distributed%20systems&rft.au=Kostikov,%20Alexander%20A.&rft.date=2021-11-02&rft.volume=36&rft.issue=6&rft.spage=516&rft.epage=534&rft.pages=516-534&rft.issn=1744-5760&rft.eissn=1744-5779&rft_id=info:doi/10.1080/17445760.2021.1945054&rft_dat=%3Cproquest_cross%3E2581110260%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-4b349171f1a2e6ab59962efc79a0ee69af4380e2c438292675dd778d253e952f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2581110260&rft_id=info:pmid/&rfr_iscdi=true