Loading…
Bayesian Channel Estimation in Multi-User Massive MIMO With Extremely Large Antenna Array
We investigate wideband uplink channel estimation for a multi-user (MU) multiple-input single-output (MISO) OFDM system, in which the base station (BS) is equipped with an extremely large antenna array (ELAA). The existing compressive sensing massive multiple-input multiple-output (MIMO) channel est...
Saved in:
Published in: | IEEE transactions on signal processing 2021, Vol.69, p.5463-5478 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate wideband uplink channel estimation for a multi-user (MU) multiple-input single-output (MISO) OFDM system, in which the base station (BS) is equipped with an extremely large antenna array (ELAA). The existing compressive sensing massive multiple-input multiple-output (MIMO) channel estimation approach with a traditional sparsity promoting prior model becomes invalid in the ELAA scenario due to the spatial non-stationary effects caused by the spherical wavefront and visibility region (VR) issue. We therefore propose a new structured prior with the Hidden Markov Model (HMM) to promote the structured sparsity of the spatial non-stationary ELAA channel. Based on this, a Bayesian inference problem on the posterior of the ELAA channel coefficients is formulated. In addition, we propose the turbo orthogonal approximate message passing (Turbo-OAMP) algorithm to achieve a low-complexity channel estimation. Comprehensive simulations verify that the proposed algorithm has supreme performance under spatial non-stationary ELAA channels compared to various state-of-the-art baselines. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2021.3114999 |