Loading…
Bayesian Channel Estimation in Multi-User Massive MIMO With Extremely Large Antenna Array
We investigate wideband uplink channel estimation for a multi-user (MU) multiple-input single-output (MISO) OFDM system, in which the base station (BS) is equipped with an extremely large antenna array (ELAA). The existing compressive sensing massive multiple-input multiple-output (MIMO) channel est...
Saved in:
Published in: | IEEE transactions on signal processing 2021, Vol.69, p.5463-5478 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-7a7c9bb669b0848bd52c6e1d24babff166c2d8ec83e0cd6334fd0350507a18bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-7a7c9bb669b0848bd52c6e1d24babff166c2d8ec83e0cd6334fd0350507a18bd3 |
container_end_page | 5478 |
container_issue | |
container_start_page | 5463 |
container_title | IEEE transactions on signal processing |
container_volume | 69 |
creator | Zhu, Yifan Guo, Huayan Lau, Vincent K. N. |
description | We investigate wideband uplink channel estimation for a multi-user (MU) multiple-input single-output (MISO) OFDM system, in which the base station (BS) is equipped with an extremely large antenna array (ELAA). The existing compressive sensing massive multiple-input multiple-output (MIMO) channel estimation approach with a traditional sparsity promoting prior model becomes invalid in the ELAA scenario due to the spatial non-stationary effects caused by the spherical wavefront and visibility region (VR) issue. We therefore propose a new structured prior with the Hidden Markov Model (HMM) to promote the structured sparsity of the spatial non-stationary ELAA channel. Based on this, a Bayesian inference problem on the posterior of the ELAA channel coefficients is formulated. In addition, we propose the turbo orthogonal approximate message passing (Turbo-OAMP) algorithm to achieve a low-complexity channel estimation. Comprehensive simulations verify that the proposed algorithm has supreme performance under spatial non-stationary ELAA channels compared to various state-of-the-art baselines. |
doi_str_mv | 10.1109/TSP.2021.3114999 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2581571999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9547795</ieee_id><sourcerecordid>2581571999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-7a7c9bb669b0848bd52c6e1d24babff166c2d8ec83e0cd6334fd0350507a18bd3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4soOKd3wUvAc2fS_GhznGPqYGWCG-oppO2r6-jSmWRi_3szNjy9d_h8v4_3iaJbgkeEYPmwfHsdJTghI0oIk1KeRQMiGYkxS8V52DGnMc_Sj8voyrkNxoQxKQbR56PuwTXaoMlaGwMtmjrfbLVvOoMag_J965t45cCiXDvX_ADKZ_kCvTd-jaa_3sIW2h7Ntf0CNDYejNFobK3ur6OLWrcObk5zGK2epsvJSzxfPM8m43lcJpL4ONVpKYtCCFngjGVFxZNSAKkSVuiirokQZVJlUGYUcFkJSlldYcoxx6kmAafD6P7Yu7Pd9x6cV5tub004qRKeEZ6SYCNQ-EiVtnPOQq12Nrxpe0WwOghUQaA6CFQngSFyd4w0APCPS87SVHL6B2OTbBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581571999</pqid></control><display><type>article</type><title>Bayesian Channel Estimation in Multi-User Massive MIMO With Extremely Large Antenna Array</title><source>IEEE Xplore (Online service)</source><creator>Zhu, Yifan ; Guo, Huayan ; Lau, Vincent K. N.</creator><creatorcontrib>Zhu, Yifan ; Guo, Huayan ; Lau, Vincent K. N.</creatorcontrib><description>We investigate wideband uplink channel estimation for a multi-user (MU) multiple-input single-output (MISO) OFDM system, in which the base station (BS) is equipped with an extremely large antenna array (ELAA). The existing compressive sensing massive multiple-input multiple-output (MIMO) channel estimation approach with a traditional sparsity promoting prior model becomes invalid in the ELAA scenario due to the spatial non-stationary effects caused by the spherical wavefront and visibility region (VR) issue. We therefore propose a new structured prior with the Hidden Markov Model (HMM) to promote the structured sparsity of the spatial non-stationary ELAA channel. Based on this, a Bayesian inference problem on the posterior of the ELAA channel coefficients is formulated. In addition, we propose the turbo orthogonal approximate message passing (Turbo-OAMP) algorithm to achieve a low-complexity channel estimation. Comprehensive simulations verify that the proposed algorithm has supreme performance under spatial non-stationary ELAA channels compared to various state-of-the-art baselines.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2021.3114999</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antenna arrays ; Antennas ; Bayes methods ; Bayesian analysis ; Channel estimation ; Extremely large antenna array ; Hidden Markov models ; Markov chains ; Massive MIMO ; Message passing ; MIMO communication ; MISO (control systems) ; Scattering ; Sparsity ; Statistical inference ; structured sparsity ; Visibility ; Wave fronts</subject><ispartof>IEEE transactions on signal processing, 2021, Vol.69, p.5463-5478</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-7a7c9bb669b0848bd52c6e1d24babff166c2d8ec83e0cd6334fd0350507a18bd3</citedby><cites>FETCH-LOGICAL-c291t-7a7c9bb669b0848bd52c6e1d24babff166c2d8ec83e0cd6334fd0350507a18bd3</cites><orcidid>0000-0001-7769-6008 ; 0000-0001-8419-150X ; 0000-0001-5348-1029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9547795$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27897,27898,27899,54768</link.rule.ids></links><search><creatorcontrib>Zhu, Yifan</creatorcontrib><creatorcontrib>Guo, Huayan</creatorcontrib><creatorcontrib>Lau, Vincent K. N.</creatorcontrib><title>Bayesian Channel Estimation in Multi-User Massive MIMO With Extremely Large Antenna Array</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We investigate wideband uplink channel estimation for a multi-user (MU) multiple-input single-output (MISO) OFDM system, in which the base station (BS) is equipped with an extremely large antenna array (ELAA). The existing compressive sensing massive multiple-input multiple-output (MIMO) channel estimation approach with a traditional sparsity promoting prior model becomes invalid in the ELAA scenario due to the spatial non-stationary effects caused by the spherical wavefront and visibility region (VR) issue. We therefore propose a new structured prior with the Hidden Markov Model (HMM) to promote the structured sparsity of the spatial non-stationary ELAA channel. Based on this, a Bayesian inference problem on the posterior of the ELAA channel coefficients is formulated. In addition, we propose the turbo orthogonal approximate message passing (Turbo-OAMP) algorithm to achieve a low-complexity channel estimation. Comprehensive simulations verify that the proposed algorithm has supreme performance under spatial non-stationary ELAA channels compared to various state-of-the-art baselines.</description><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Channel estimation</subject><subject>Extremely large antenna array</subject><subject>Hidden Markov models</subject><subject>Markov chains</subject><subject>Massive MIMO</subject><subject>Message passing</subject><subject>MIMO communication</subject><subject>MISO (control systems)</subject><subject>Scattering</subject><subject>Sparsity</subject><subject>Statistical inference</subject><subject>structured sparsity</subject><subject>Visibility</subject><subject>Wave fronts</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAUx4soOKd3wUvAc2fS_GhznGPqYGWCG-oppO2r6-jSmWRi_3szNjy9d_h8v4_3iaJbgkeEYPmwfHsdJTghI0oIk1KeRQMiGYkxS8V52DGnMc_Sj8voyrkNxoQxKQbR56PuwTXaoMlaGwMtmjrfbLVvOoMag_J965t45cCiXDvX_ADKZ_kCvTd-jaa_3sIW2h7Ntf0CNDYejNFobK3ur6OLWrcObk5zGK2epsvJSzxfPM8m43lcJpL4ONVpKYtCCFngjGVFxZNSAKkSVuiirokQZVJlUGYUcFkJSlldYcoxx6kmAafD6P7Yu7Pd9x6cV5tub004qRKeEZ6SYCNQ-EiVtnPOQq12Nrxpe0WwOghUQaA6CFQngSFyd4w0APCPS87SVHL6B2OTbBk</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhu, Yifan</creator><creator>Guo, Huayan</creator><creator>Lau, Vincent K. N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7769-6008</orcidid><orcidid>https://orcid.org/0000-0001-8419-150X</orcidid><orcidid>https://orcid.org/0000-0001-5348-1029</orcidid></search><sort><creationdate>2021</creationdate><title>Bayesian Channel Estimation in Multi-User Massive MIMO With Extremely Large Antenna Array</title><author>Zhu, Yifan ; Guo, Huayan ; Lau, Vincent K. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-7a7c9bb669b0848bd52c6e1d24babff166c2d8ec83e0cd6334fd0350507a18bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Channel estimation</topic><topic>Extremely large antenna array</topic><topic>Hidden Markov models</topic><topic>Markov chains</topic><topic>Massive MIMO</topic><topic>Message passing</topic><topic>MIMO communication</topic><topic>MISO (control systems)</topic><topic>Scattering</topic><topic>Sparsity</topic><topic>Statistical inference</topic><topic>structured sparsity</topic><topic>Visibility</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yifan</creatorcontrib><creatorcontrib>Guo, Huayan</creatorcontrib><creatorcontrib>Lau, Vincent K. N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yifan</au><au>Guo, Huayan</au><au>Lau, Vincent K. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Channel Estimation in Multi-User Massive MIMO With Extremely Large Antenna Array</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2021</date><risdate>2021</risdate><volume>69</volume><spage>5463</spage><epage>5478</epage><pages>5463-5478</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We investigate wideband uplink channel estimation for a multi-user (MU) multiple-input single-output (MISO) OFDM system, in which the base station (BS) is equipped with an extremely large antenna array (ELAA). The existing compressive sensing massive multiple-input multiple-output (MIMO) channel estimation approach with a traditional sparsity promoting prior model becomes invalid in the ELAA scenario due to the spatial non-stationary effects caused by the spherical wavefront and visibility region (VR) issue. We therefore propose a new structured prior with the Hidden Markov Model (HMM) to promote the structured sparsity of the spatial non-stationary ELAA channel. Based on this, a Bayesian inference problem on the posterior of the ELAA channel coefficients is formulated. In addition, we propose the turbo orthogonal approximate message passing (Turbo-OAMP) algorithm to achieve a low-complexity channel estimation. Comprehensive simulations verify that the proposed algorithm has supreme performance under spatial non-stationary ELAA channels compared to various state-of-the-art baselines.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2021.3114999</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7769-6008</orcidid><orcidid>https://orcid.org/0000-0001-8419-150X</orcidid><orcidid>https://orcid.org/0000-0001-5348-1029</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2021, Vol.69, p.5463-5478 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_2581571999 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Antenna arrays Antennas Bayes methods Bayesian analysis Channel estimation Extremely large antenna array Hidden Markov models Markov chains Massive MIMO Message passing MIMO communication MISO (control systems) Scattering Sparsity Statistical inference structured sparsity Visibility Wave fronts |
title | Bayesian Channel Estimation in Multi-User Massive MIMO With Extremely Large Antenna Array |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T21%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Channel%20Estimation%20in%20Multi-User%20Massive%20MIMO%20With%20Extremely%20Large%20Antenna%20Array&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Zhu,%20Yifan&rft.date=2021&rft.volume=69&rft.spage=5463&rft.epage=5478&rft.pages=5463-5478&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2021.3114999&rft_dat=%3Cproquest_ieee_%3E2581571999%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-7a7c9bb669b0848bd52c6e1d24babff166c2d8ec83e0cd6334fd0350507a18bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2581571999&rft_id=info:pmid/&rft_ieee_id=9547795&rfr_iscdi=true |