Loading…

Bayesian Channel Estimation in Multi-User Massive MIMO With Extremely Large Antenna Array

We investigate wideband uplink channel estimation for a multi-user (MU) multiple-input single-output (MISO) OFDM system, in which the base station (BS) is equipped with an extremely large antenna array (ELAA). The existing compressive sensing massive multiple-input multiple-output (MIMO) channel est...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2021, Vol.69, p.5463-5478
Main Authors: Zhu, Yifan, Guo, Huayan, Lau, Vincent K. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-7a7c9bb669b0848bd52c6e1d24babff166c2d8ec83e0cd6334fd0350507a18bd3
cites cdi_FETCH-LOGICAL-c291t-7a7c9bb669b0848bd52c6e1d24babff166c2d8ec83e0cd6334fd0350507a18bd3
container_end_page 5478
container_issue
container_start_page 5463
container_title IEEE transactions on signal processing
container_volume 69
creator Zhu, Yifan
Guo, Huayan
Lau, Vincent K. N.
description We investigate wideband uplink channel estimation for a multi-user (MU) multiple-input single-output (MISO) OFDM system, in which the base station (BS) is equipped with an extremely large antenna array (ELAA). The existing compressive sensing massive multiple-input multiple-output (MIMO) channel estimation approach with a traditional sparsity promoting prior model becomes invalid in the ELAA scenario due to the spatial non-stationary effects caused by the spherical wavefront and visibility region (VR) issue. We therefore propose a new structured prior with the Hidden Markov Model (HMM) to promote the structured sparsity of the spatial non-stationary ELAA channel. Based on this, a Bayesian inference problem on the posterior of the ELAA channel coefficients is formulated. In addition, we propose the turbo orthogonal approximate message passing (Turbo-OAMP) algorithm to achieve a low-complexity channel estimation. Comprehensive simulations verify that the proposed algorithm has supreme performance under spatial non-stationary ELAA channels compared to various state-of-the-art baselines.
doi_str_mv 10.1109/TSP.2021.3114999
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2581571999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9547795</ieee_id><sourcerecordid>2581571999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-7a7c9bb669b0848bd52c6e1d24babff166c2d8ec83e0cd6334fd0350507a18bd3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4soOKd3wUvAc2fS_GhznGPqYGWCG-oppO2r6-jSmWRi_3szNjy9d_h8v4_3iaJbgkeEYPmwfHsdJTghI0oIk1KeRQMiGYkxS8V52DGnMc_Sj8voyrkNxoQxKQbR56PuwTXaoMlaGwMtmjrfbLVvOoMag_J965t45cCiXDvX_ADKZ_kCvTd-jaa_3sIW2h7Ntf0CNDYejNFobK3ur6OLWrcObk5zGK2epsvJSzxfPM8m43lcJpL4ONVpKYtCCFngjGVFxZNSAKkSVuiirokQZVJlUGYUcFkJSlldYcoxx6kmAafD6P7Yu7Pd9x6cV5tub004qRKeEZ6SYCNQ-EiVtnPOQq12Nrxpe0WwOghUQaA6CFQngSFyd4w0APCPS87SVHL6B2OTbBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581571999</pqid></control><display><type>article</type><title>Bayesian Channel Estimation in Multi-User Massive MIMO With Extremely Large Antenna Array</title><source>IEEE Xplore (Online service)</source><creator>Zhu, Yifan ; Guo, Huayan ; Lau, Vincent K. N.</creator><creatorcontrib>Zhu, Yifan ; Guo, Huayan ; Lau, Vincent K. N.</creatorcontrib><description>We investigate wideband uplink channel estimation for a multi-user (MU) multiple-input single-output (MISO) OFDM system, in which the base station (BS) is equipped with an extremely large antenna array (ELAA). The existing compressive sensing massive multiple-input multiple-output (MIMO) channel estimation approach with a traditional sparsity promoting prior model becomes invalid in the ELAA scenario due to the spatial non-stationary effects caused by the spherical wavefront and visibility region (VR) issue. We therefore propose a new structured prior with the Hidden Markov Model (HMM) to promote the structured sparsity of the spatial non-stationary ELAA channel. Based on this, a Bayesian inference problem on the posterior of the ELAA channel coefficients is formulated. In addition, we propose the turbo orthogonal approximate message passing (Turbo-OAMP) algorithm to achieve a low-complexity channel estimation. Comprehensive simulations verify that the proposed algorithm has supreme performance under spatial non-stationary ELAA channels compared to various state-of-the-art baselines.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2021.3114999</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antenna arrays ; Antennas ; Bayes methods ; Bayesian analysis ; Channel estimation ; Extremely large antenna array ; Hidden Markov models ; Markov chains ; Massive MIMO ; Message passing ; MIMO communication ; MISO (control systems) ; Scattering ; Sparsity ; Statistical inference ; structured sparsity ; Visibility ; Wave fronts</subject><ispartof>IEEE transactions on signal processing, 2021, Vol.69, p.5463-5478</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-7a7c9bb669b0848bd52c6e1d24babff166c2d8ec83e0cd6334fd0350507a18bd3</citedby><cites>FETCH-LOGICAL-c291t-7a7c9bb669b0848bd52c6e1d24babff166c2d8ec83e0cd6334fd0350507a18bd3</cites><orcidid>0000-0001-7769-6008 ; 0000-0001-8419-150X ; 0000-0001-5348-1029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9547795$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27897,27898,27899,54768</link.rule.ids></links><search><creatorcontrib>Zhu, Yifan</creatorcontrib><creatorcontrib>Guo, Huayan</creatorcontrib><creatorcontrib>Lau, Vincent K. N.</creatorcontrib><title>Bayesian Channel Estimation in Multi-User Massive MIMO With Extremely Large Antenna Array</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We investigate wideband uplink channel estimation for a multi-user (MU) multiple-input single-output (MISO) OFDM system, in which the base station (BS) is equipped with an extremely large antenna array (ELAA). The existing compressive sensing massive multiple-input multiple-output (MIMO) channel estimation approach with a traditional sparsity promoting prior model becomes invalid in the ELAA scenario due to the spatial non-stationary effects caused by the spherical wavefront and visibility region (VR) issue. We therefore propose a new structured prior with the Hidden Markov Model (HMM) to promote the structured sparsity of the spatial non-stationary ELAA channel. Based on this, a Bayesian inference problem on the posterior of the ELAA channel coefficients is formulated. In addition, we propose the turbo orthogonal approximate message passing (Turbo-OAMP) algorithm to achieve a low-complexity channel estimation. Comprehensive simulations verify that the proposed algorithm has supreme performance under spatial non-stationary ELAA channels compared to various state-of-the-art baselines.</description><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Channel estimation</subject><subject>Extremely large antenna array</subject><subject>Hidden Markov models</subject><subject>Markov chains</subject><subject>Massive MIMO</subject><subject>Message passing</subject><subject>MIMO communication</subject><subject>MISO (control systems)</subject><subject>Scattering</subject><subject>Sparsity</subject><subject>Statistical inference</subject><subject>structured sparsity</subject><subject>Visibility</subject><subject>Wave fronts</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAUx4soOKd3wUvAc2fS_GhznGPqYGWCG-oppO2r6-jSmWRi_3szNjy9d_h8v4_3iaJbgkeEYPmwfHsdJTghI0oIk1KeRQMiGYkxS8V52DGnMc_Sj8voyrkNxoQxKQbR56PuwTXaoMlaGwMtmjrfbLVvOoMag_J965t45cCiXDvX_ADKZ_kCvTd-jaa_3sIW2h7Ntf0CNDYejNFobK3ur6OLWrcObk5zGK2epsvJSzxfPM8m43lcJpL4ONVpKYtCCFngjGVFxZNSAKkSVuiirokQZVJlUGYUcFkJSlldYcoxx6kmAafD6P7Yu7Pd9x6cV5tub004qRKeEZ6SYCNQ-EiVtnPOQq12Nrxpe0WwOghUQaA6CFQngSFyd4w0APCPS87SVHL6B2OTbBk</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhu, Yifan</creator><creator>Guo, Huayan</creator><creator>Lau, Vincent K. N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7769-6008</orcidid><orcidid>https://orcid.org/0000-0001-8419-150X</orcidid><orcidid>https://orcid.org/0000-0001-5348-1029</orcidid></search><sort><creationdate>2021</creationdate><title>Bayesian Channel Estimation in Multi-User Massive MIMO With Extremely Large Antenna Array</title><author>Zhu, Yifan ; Guo, Huayan ; Lau, Vincent K. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-7a7c9bb669b0848bd52c6e1d24babff166c2d8ec83e0cd6334fd0350507a18bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Channel estimation</topic><topic>Extremely large antenna array</topic><topic>Hidden Markov models</topic><topic>Markov chains</topic><topic>Massive MIMO</topic><topic>Message passing</topic><topic>MIMO communication</topic><topic>MISO (control systems)</topic><topic>Scattering</topic><topic>Sparsity</topic><topic>Statistical inference</topic><topic>structured sparsity</topic><topic>Visibility</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yifan</creatorcontrib><creatorcontrib>Guo, Huayan</creatorcontrib><creatorcontrib>Lau, Vincent K. N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yifan</au><au>Guo, Huayan</au><au>Lau, Vincent K. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Channel Estimation in Multi-User Massive MIMO With Extremely Large Antenna Array</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2021</date><risdate>2021</risdate><volume>69</volume><spage>5463</spage><epage>5478</epage><pages>5463-5478</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We investigate wideband uplink channel estimation for a multi-user (MU) multiple-input single-output (MISO) OFDM system, in which the base station (BS) is equipped with an extremely large antenna array (ELAA). The existing compressive sensing massive multiple-input multiple-output (MIMO) channel estimation approach with a traditional sparsity promoting prior model becomes invalid in the ELAA scenario due to the spatial non-stationary effects caused by the spherical wavefront and visibility region (VR) issue. We therefore propose a new structured prior with the Hidden Markov Model (HMM) to promote the structured sparsity of the spatial non-stationary ELAA channel. Based on this, a Bayesian inference problem on the posterior of the ELAA channel coefficients is formulated. In addition, we propose the turbo orthogonal approximate message passing (Turbo-OAMP) algorithm to achieve a low-complexity channel estimation. Comprehensive simulations verify that the proposed algorithm has supreme performance under spatial non-stationary ELAA channels compared to various state-of-the-art baselines.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2021.3114999</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7769-6008</orcidid><orcidid>https://orcid.org/0000-0001-8419-150X</orcidid><orcidid>https://orcid.org/0000-0001-5348-1029</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2021, Vol.69, p.5463-5478
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_2581571999
source IEEE Xplore (Online service)
subjects Algorithms
Antenna arrays
Antennas
Bayes methods
Bayesian analysis
Channel estimation
Extremely large antenna array
Hidden Markov models
Markov chains
Massive MIMO
Message passing
MIMO communication
MISO (control systems)
Scattering
Sparsity
Statistical inference
structured sparsity
Visibility
Wave fronts
title Bayesian Channel Estimation in Multi-User Massive MIMO With Extremely Large Antenna Array
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T21%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Channel%20Estimation%20in%20Multi-User%20Massive%20MIMO%20With%20Extremely%20Large%20Antenna%20Array&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Zhu,%20Yifan&rft.date=2021&rft.volume=69&rft.spage=5463&rft.epage=5478&rft.pages=5463-5478&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2021.3114999&rft_dat=%3Cproquest_ieee_%3E2581571999%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-7a7c9bb669b0848bd52c6e1d24babff166c2d8ec83e0cd6334fd0350507a18bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2581571999&rft_id=info:pmid/&rft_ieee_id=9547795&rfr_iscdi=true