Loading…
VP03.02: A machine learning approach applied to gynecological ultrasound to predict progression‐free survival in ovarian cancer patients
Saved in:
Published in: | Ultrasound in obstetrics & gynecology 2021-10, Vol.58 (S1), p.99-100 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 100 |
container_issue | S1 |
container_start_page | 99 |
container_title | Ultrasound in obstetrics & gynecology |
container_volume | 58 |
creator | Arezzo, F. Loizzi, V. Lombardi, C. Cazzato, G. Venerito, V. Cataldo, V. Mongelli, M. Cicinelli, E. Cormio, G. Santarsiero, C. |
description | |
doi_str_mv | 10.1002/uog.24046 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581709670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581709670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1026-b1a54d15203eca13cd073d7f69940dbf55c9ca08bfebea4f568593f4a24689d23</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEuVj4B9YYmJIOTuO07BVFV9SpTIAa-Q6l2CU2sFOiroxM_Eb-SWYlpXpPd09793pJeSMwZgB8MvBNWMuQMg9MmJCFgnkkO2TERQSklwW_JAchfAKAFKkckQ-nx8gHQO_olO6UvrFWKQtKm-NbajqOu9i87doDVa0d7TZWNSudY3RqqVD23sV3GC3s85jZXQf1TUeQzDOfn981R6RhsGvzTo6jKVurbxRlmplNXraqd6g7cMJOahVG_D0T4_J08314-wumS9u72fTeaIZcJksmcpExTIOKWrFUl1BnlZ5LYtCQLWss0wXWsFkWeMSlagzOcmKtBaKCzkpKp4ek_Pd3vjm24ChL1_d4G08WfJswvIYVQ6RuthR2rsQPNZl581K-U3JoPyNuoxRl9uoI3u5Y99Ni5v_wfJpcbtz_ACw4YNC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581709670</pqid></control><display><type>article</type><title>VP03.02: A machine learning approach applied to gynecological ultrasound to predict progression‐free survival in ovarian cancer patients</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Arezzo, F. ; Loizzi, V. ; Lombardi, C. ; Cazzato, G. ; Venerito, V. ; Cataldo, V. ; Mongelli, M. ; Cicinelli, E. ; Cormio, G. ; Santarsiero, C.</creator><creatorcontrib>Arezzo, F. ; Loizzi, V. ; Lombardi, C. ; Cazzato, G. ; Venerito, V. ; Cataldo, V. ; Mongelli, M. ; Cicinelli, E. ; Cormio, G. ; Santarsiero, C.</creatorcontrib><identifier>ISSN: 0960-7692</identifier><identifier>EISSN: 1469-0705</identifier><identifier>DOI: 10.1002/uog.24046</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Learning algorithms ; Machine learning ; Ovarian cancer ; Ultrasonic imaging</subject><ispartof>Ultrasound in obstetrics & gynecology, 2021-10, Vol.58 (S1), p.99-100</ispartof><rights>The Authors 2021. © Ultrasound in Obstetrics & Gynecology</rights><rights>Copyright © 2021 ISUOG. Published by John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Arezzo, F.</creatorcontrib><creatorcontrib>Loizzi, V.</creatorcontrib><creatorcontrib>Lombardi, C.</creatorcontrib><creatorcontrib>Cazzato, G.</creatorcontrib><creatorcontrib>Venerito, V.</creatorcontrib><creatorcontrib>Cataldo, V.</creatorcontrib><creatorcontrib>Mongelli, M.</creatorcontrib><creatorcontrib>Cicinelli, E.</creatorcontrib><creatorcontrib>Cormio, G.</creatorcontrib><creatorcontrib>Santarsiero, C.</creatorcontrib><title>VP03.02: A machine learning approach applied to gynecological ultrasound to predict progression‐free survival in ovarian cancer patients</title><title>Ultrasound in obstetrics & gynecology</title><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Ovarian cancer</subject><subject>Ultrasonic imaging</subject><issn>0960-7692</issn><issn>1469-0705</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEuVj4B9YYmJIOTuO07BVFV9SpTIAa-Q6l2CU2sFOiroxM_Eb-SWYlpXpPd09793pJeSMwZgB8MvBNWMuQMg9MmJCFgnkkO2TERQSklwW_JAchfAKAFKkckQ-nx8gHQO_olO6UvrFWKQtKm-NbajqOu9i87doDVa0d7TZWNSudY3RqqVD23sV3GC3s85jZXQf1TUeQzDOfn981R6RhsGvzTo6jKVurbxRlmplNXraqd6g7cMJOahVG_D0T4_J08314-wumS9u72fTeaIZcJksmcpExTIOKWrFUl1BnlZ5LYtCQLWss0wXWsFkWeMSlagzOcmKtBaKCzkpKp4ek_Pd3vjm24ChL1_d4G08WfJswvIYVQ6RuthR2rsQPNZl581K-U3JoPyNuoxRl9uoI3u5Y99Ni5v_wfJpcbtz_ACw4YNC</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Arezzo, F.</creator><creator>Loizzi, V.</creator><creator>Lombardi, C.</creator><creator>Cazzato, G.</creator><creator>Venerito, V.</creator><creator>Cataldo, V.</creator><creator>Mongelli, M.</creator><creator>Cicinelli, E.</creator><creator>Cormio, G.</creator><creator>Santarsiero, C.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope></search><sort><creationdate>202110</creationdate><title>VP03.02: A machine learning approach applied to gynecological ultrasound to predict progression‐free survival in ovarian cancer patients</title><author>Arezzo, F. ; Loizzi, V. ; Lombardi, C. ; Cazzato, G. ; Venerito, V. ; Cataldo, V. ; Mongelli, M. ; Cicinelli, E. ; Cormio, G. ; Santarsiero, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1026-b1a54d15203eca13cd073d7f69940dbf55c9ca08bfebea4f568593f4a24689d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Ovarian cancer</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arezzo, F.</creatorcontrib><creatorcontrib>Loizzi, V.</creatorcontrib><creatorcontrib>Lombardi, C.</creatorcontrib><creatorcontrib>Cazzato, G.</creatorcontrib><creatorcontrib>Venerito, V.</creatorcontrib><creatorcontrib>Cataldo, V.</creatorcontrib><creatorcontrib>Mongelli, M.</creatorcontrib><creatorcontrib>Cicinelli, E.</creatorcontrib><creatorcontrib>Cormio, G.</creatorcontrib><creatorcontrib>Santarsiero, C.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Ultrasound in obstetrics & gynecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arezzo, F.</au><au>Loizzi, V.</au><au>Lombardi, C.</au><au>Cazzato, G.</au><au>Venerito, V.</au><au>Cataldo, V.</au><au>Mongelli, M.</au><au>Cicinelli, E.</au><au>Cormio, G.</au><au>Santarsiero, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VP03.02: A machine learning approach applied to gynecological ultrasound to predict progression‐free survival in ovarian cancer patients</atitle><jtitle>Ultrasound in obstetrics & gynecology</jtitle><date>2021-10</date><risdate>2021</risdate><volume>58</volume><issue>S1</issue><spage>99</spage><epage>100</epage><pages>99-100</pages><issn>0960-7692</issn><eissn>1469-0705</eissn><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/uog.24046</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7692 |
ispartof | Ultrasound in obstetrics & gynecology, 2021-10, Vol.58 (S1), p.99-100 |
issn | 0960-7692 1469-0705 |
language | eng |
recordid | cdi_proquest_journals_2581709670 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Learning algorithms Machine learning Ovarian cancer Ultrasonic imaging |
title | VP03.02: A machine learning approach applied to gynecological ultrasound to predict progression‐free survival in ovarian cancer patients |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VP03.02:%20A%20machine%20learning%20approach%20applied%20to%20gynecological%20ultrasound%20to%20predict%20progression%E2%80%90free%20survival%20in%20ovarian%20cancer%20patients&rft.jtitle=Ultrasound%20in%20obstetrics%20&%20gynecology&rft.au=Arezzo,%20F.&rft.date=2021-10&rft.volume=58&rft.issue=S1&rft.spage=99&rft.epage=100&rft.pages=99-100&rft.issn=0960-7692&rft.eissn=1469-0705&rft_id=info:doi/10.1002/uog.24046&rft_dat=%3Cproquest_cross%3E2581709670%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1026-b1a54d15203eca13cd073d7f69940dbf55c9ca08bfebea4f568593f4a24689d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2581709670&rft_id=info:pmid/&rfr_iscdi=true |