Loading…
Easy-plane spin Hall nano-oscillators as spiking neurons for neuromorphic computing
We show analytically using a macrospin approximation that easy-plane spin Hall nano-oscillators excited by a spin-current polarized perpendicularly to the easy-plane have phase dynamics analogous to that of Josephson junctions. Similarly to Josephson junctions, they can reproduce the spiking behavio...
Saved in:
Published in: | arXiv.org 2021-10 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Marković, Danijela Daniels, Matthew W Sethi, Pankaj Kent, Andrew D Stiles, Mark D Grollier, Julie |
description | We show analytically using a macrospin approximation that easy-plane spin Hall nano-oscillators excited by a spin-current polarized perpendicularly to the easy-plane have phase dynamics analogous to that of Josephson junctions. Similarly to Josephson junctions, they can reproduce the spiking behavior of biological neurons that is appropriate for neuromorphic computing. We perform micromagnetic simulations of such oscillators realized in the nano-constriction geometry and show that the easy-plane spiking dynamics is preserved in an experimentally feasible architecture. Finally we simulate two elementary neural network blocks that implement operations essential for neuromorphic computing. First, we show that output spikes energies from two neurons can be summed and injected into a following layer neuron and second, we demonstrate that outputs can be multiplied by synaptic weights implemented by locally modifying the anisotropy. |
doi_str_mv | 10.48550/arxiv.2110.06737 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2581962338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581962338</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-ca1d5f8204914ffa625e40e2106a0eaaf24800ba16ca05d3cc237ea324457afa3</originalsourceid><addsrcrecordid>eNotT01LAzEUDIJgqf0B3gKet768fGx6lFKtUPBg7-WZJro1TdakK_rvXamnGWaGGYaxGwFzZbWGOyrf3dccxSiAaWV7wSYopWisQrxis1oPAICmRa3lhL2sqP40faTkee27xNcUI0-UcpOr62KkUy6VU_1zP7r0xpMfSk6Vh1zO_JhL_9457vKxH05j5JpdBorVz_5xyrYPq-1y3WyeH5-W95uGNNrGkdjrYBHUQqgQyKD2CjwKMASeKKCyAK8kjCPQe-kcytaTRKV0S4HklN2ea_uSPwdfT7tDHkoaF3eorViY8baVv6Y6Upk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581962338</pqid></control><display><type>article</type><title>Easy-plane spin Hall nano-oscillators as spiking neurons for neuromorphic computing</title><source>Publicly Available Content Database</source><creator>Marković, Danijela ; Daniels, Matthew W ; Sethi, Pankaj ; Kent, Andrew D ; Stiles, Mark D ; Grollier, Julie</creator><creatorcontrib>Marković, Danijela ; Daniels, Matthew W ; Sethi, Pankaj ; Kent, Andrew D ; Stiles, Mark D ; Grollier, Julie</creatorcontrib><description>We show analytically using a macrospin approximation that easy-plane spin Hall nano-oscillators excited by a spin-current polarized perpendicularly to the easy-plane have phase dynamics analogous to that of Josephson junctions. Similarly to Josephson junctions, they can reproduce the spiking behavior of biological neurons that is appropriate for neuromorphic computing. We perform micromagnetic simulations of such oscillators realized in the nano-constriction geometry and show that the easy-plane spiking dynamics is preserved in an experimentally feasible architecture. Finally we simulate two elementary neural network blocks that implement operations essential for neuromorphic computing. First, we show that output spikes energies from two neurons can be summed and injected into a following layer neuron and second, we demonstrate that outputs can be multiplied by synaptic weights implemented by locally modifying the anisotropy.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2110.06737</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anisotropy ; Josephson junctions ; Neural networks ; Neuromorphic computing ; Neurons ; Oscillators ; Spiking</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2581962338?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Marković, Danijela</creatorcontrib><creatorcontrib>Daniels, Matthew W</creatorcontrib><creatorcontrib>Sethi, Pankaj</creatorcontrib><creatorcontrib>Kent, Andrew D</creatorcontrib><creatorcontrib>Stiles, Mark D</creatorcontrib><creatorcontrib>Grollier, Julie</creatorcontrib><title>Easy-plane spin Hall nano-oscillators as spiking neurons for neuromorphic computing</title><title>arXiv.org</title><description>We show analytically using a macrospin approximation that easy-plane spin Hall nano-oscillators excited by a spin-current polarized perpendicularly to the easy-plane have phase dynamics analogous to that of Josephson junctions. Similarly to Josephson junctions, they can reproduce the spiking behavior of biological neurons that is appropriate for neuromorphic computing. We perform micromagnetic simulations of such oscillators realized in the nano-constriction geometry and show that the easy-plane spiking dynamics is preserved in an experimentally feasible architecture. Finally we simulate two elementary neural network blocks that implement operations essential for neuromorphic computing. First, we show that output spikes energies from two neurons can be summed and injected into a following layer neuron and second, we demonstrate that outputs can be multiplied by synaptic weights implemented by locally modifying the anisotropy.</description><subject>Anisotropy</subject><subject>Josephson junctions</subject><subject>Neural networks</subject><subject>Neuromorphic computing</subject><subject>Neurons</subject><subject>Oscillators</subject><subject>Spiking</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotT01LAzEUDIJgqf0B3gKet768fGx6lFKtUPBg7-WZJro1TdakK_rvXamnGWaGGYaxGwFzZbWGOyrf3dccxSiAaWV7wSYopWisQrxis1oPAICmRa3lhL2sqP40faTkee27xNcUI0-UcpOr62KkUy6VU_1zP7r0xpMfSk6Vh1zO_JhL_9457vKxH05j5JpdBorVz_5xyrYPq-1y3WyeH5-W95uGNNrGkdjrYBHUQqgQyKD2CjwKMASeKKCyAK8kjCPQe-kcytaTRKV0S4HklN2ea_uSPwdfT7tDHkoaF3eorViY8baVv6Y6Upk</recordid><startdate>20211013</startdate><enddate>20211013</enddate><creator>Marković, Danijela</creator><creator>Daniels, Matthew W</creator><creator>Sethi, Pankaj</creator><creator>Kent, Andrew D</creator><creator>Stiles, Mark D</creator><creator>Grollier, Julie</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211013</creationdate><title>Easy-plane spin Hall nano-oscillators as spiking neurons for neuromorphic computing</title><author>Marković, Danijela ; Daniels, Matthew W ; Sethi, Pankaj ; Kent, Andrew D ; Stiles, Mark D ; Grollier, Julie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-ca1d5f8204914ffa625e40e2106a0eaaf24800ba16ca05d3cc237ea324457afa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Josephson junctions</topic><topic>Neural networks</topic><topic>Neuromorphic computing</topic><topic>Neurons</topic><topic>Oscillators</topic><topic>Spiking</topic><toplevel>online_resources</toplevel><creatorcontrib>Marković, Danijela</creatorcontrib><creatorcontrib>Daniels, Matthew W</creatorcontrib><creatorcontrib>Sethi, Pankaj</creatorcontrib><creatorcontrib>Kent, Andrew D</creatorcontrib><creatorcontrib>Stiles, Mark D</creatorcontrib><creatorcontrib>Grollier, Julie</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marković, Danijela</au><au>Daniels, Matthew W</au><au>Sethi, Pankaj</au><au>Kent, Andrew D</au><au>Stiles, Mark D</au><au>Grollier, Julie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Easy-plane spin Hall nano-oscillators as spiking neurons for neuromorphic computing</atitle><jtitle>arXiv.org</jtitle><date>2021-10-13</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We show analytically using a macrospin approximation that easy-plane spin Hall nano-oscillators excited by a spin-current polarized perpendicularly to the easy-plane have phase dynamics analogous to that of Josephson junctions. Similarly to Josephson junctions, they can reproduce the spiking behavior of biological neurons that is appropriate for neuromorphic computing. We perform micromagnetic simulations of such oscillators realized in the nano-constriction geometry and show that the easy-plane spiking dynamics is preserved in an experimentally feasible architecture. Finally we simulate two elementary neural network blocks that implement operations essential for neuromorphic computing. First, we show that output spikes energies from two neurons can be summed and injected into a following layer neuron and second, we demonstrate that outputs can be multiplied by synaptic weights implemented by locally modifying the anisotropy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2110.06737</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2581962338 |
source | Publicly Available Content Database |
subjects | Anisotropy Josephson junctions Neural networks Neuromorphic computing Neurons Oscillators Spiking |
title | Easy-plane spin Hall nano-oscillators as spiking neurons for neuromorphic computing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Easy-plane%20spin%20Hall%20nano-oscillators%20as%20spiking%20neurons%20for%20neuromorphic%20computing&rft.jtitle=arXiv.org&rft.au=Markovi%C4%87,%20Danijela&rft.date=2021-10-13&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2110.06737&rft_dat=%3Cproquest%3E2581962338%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-ca1d5f8204914ffa625e40e2106a0eaaf24800ba16ca05d3cc237ea324457afa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2581962338&rft_id=info:pmid/&rfr_iscdi=true |