Loading…
On the use of summarization and transformer architectures for profiling résumés
Profiling professional figures is becoming more and more crucial, as companies and recruiters face the challenges of Industry 4.0. On the one hand, demand for specific knowledge in professional figures is rising. On the other hand, workers try to broaden the spectrum of their skills in order to rema...
Saved in:
Published in: | Expert systems with applications 2021-12, Vol.184, p.115521, Article 115521 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-948eaab0ccb332a7b52adc124bbc6be24cdcc0c389fab290c781a01be76a4e153 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-948eaab0ccb332a7b52adc124bbc6be24cdcc0c389fab290c781a01be76a4e153 |
container_end_page | |
container_issue | |
container_start_page | 115521 |
container_title | Expert systems with applications |
container_volume | 184 |
creator | Bondielli, Alessandro Marcelloni, Francesco |
description | Profiling professional figures is becoming more and more crucial, as companies and recruiters face the challenges of Industry 4.0. On the one hand, demand for specific knowledge in professional figures is rising. On the other hand, workers try to broaden the spectrum of their skills in order to remain appealing in the job market. Therefore, research related to these topics is receiving more and more attention. In this paper, we propose a methodology to profile résumés based on summarization and transformer architectures for generating résumé embeddings and on hierarchical clustering algorithms for grouping these embeddings. We evaluate different strategies and show that our approach achieves promising results on a public domain dataset containing 1202 résumés.
•Methodology to automatically profile résumés of job candidates.•Text summarization of résumés improves performance.•Transformer Architectures for representing résumés as real vectors.•Profiles generated by applying hierarchical clustering to résumé embeddings.•Profile hierarchies useful to satisfy job offers. |
doi_str_mv | 10.1016/j.eswa.2021.115521 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582220351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417421009301</els_id><sourcerecordid>2582220351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-948eaab0ccb332a7b52adc124bbc6be24cdcc0c389fab290c781a01be76a4e153</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeA59ZM0jYteJFFV2FhEfQcknTqpuy2a9Iq-kY-hy9mlnr2MgPD_8_88xFyCSwFBsV1m2L40ClnHFKAPOdwRGZQSpEUshLHZMaqXCYZyOyUnIXQMgaSMTkjT-uODhukY0DaNzSMu5327ksPru-o7mo6eN2Fpvc79FR7u3ED2mH0GGgc0r3vG7d13Sv1P9_RHMs5OWn0NuDFX5-Tl_u758VDslovHxe3q8QKXg5JlZWotWHWGiG4libnurbAM2NsYZBntraWWVFWjTa8YlaWoBkYlIXOEHIxJ1fT3pjhbcQwqLYffRdPKp6XnHMmcogqPqms70Pw2Ki9d_HFTwVMHdCpVh3QqQM6NaGLppvJhDH_u0OvgnXYWaydj9-runf_2X8Bdmh6dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582220351</pqid></control><display><type>article</type><title>On the use of summarization and transformer architectures for profiling résumés</title><source>ScienceDirect Freedom Collection</source><creator>Bondielli, Alessandro ; Marcelloni, Francesco</creator><creatorcontrib>Bondielli, Alessandro ; Marcelloni, Francesco</creatorcontrib><description>Profiling professional figures is becoming more and more crucial, as companies and recruiters face the challenges of Industry 4.0. On the one hand, demand for specific knowledge in professional figures is rising. On the other hand, workers try to broaden the spectrum of their skills in order to remain appealing in the job market. Therefore, research related to these topics is receiving more and more attention. In this paper, we propose a methodology to profile résumés based on summarization and transformer architectures for generating résumé embeddings and on hierarchical clustering algorithms for grouping these embeddings. We evaluate different strategies and show that our approach achieves promising results on a public domain dataset containing 1202 résumés.
•Methodology to automatically profile résumés of job candidates.•Text summarization of résumés improves performance.•Transformer Architectures for representing résumés as real vectors.•Profiles generated by applying hierarchical clustering to résumé embeddings.•Profile hierarchies useful to satisfy job offers.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2021.115521</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Deep learning ; Industry 4.0 ; Profiling ; Public domain ; Summarization ; Transformer</subject><ispartof>Expert systems with applications, 2021-12, Vol.184, p.115521, Article 115521</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-948eaab0ccb332a7b52adc124bbc6be24cdcc0c389fab290c781a01be76a4e153</citedby><cites>FETCH-LOGICAL-c328t-948eaab0ccb332a7b52adc124bbc6be24cdcc0c389fab290c781a01be76a4e153</cites><orcidid>0000-0003-3426-6643 ; 0000-0002-5895-876X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bondielli, Alessandro</creatorcontrib><creatorcontrib>Marcelloni, Francesco</creatorcontrib><title>On the use of summarization and transformer architectures for profiling résumés</title><title>Expert systems with applications</title><description>Profiling professional figures is becoming more and more crucial, as companies and recruiters face the challenges of Industry 4.0. On the one hand, demand for specific knowledge in professional figures is rising. On the other hand, workers try to broaden the spectrum of their skills in order to remain appealing in the job market. Therefore, research related to these topics is receiving more and more attention. In this paper, we propose a methodology to profile résumés based on summarization and transformer architectures for generating résumé embeddings and on hierarchical clustering algorithms for grouping these embeddings. We evaluate different strategies and show that our approach achieves promising results on a public domain dataset containing 1202 résumés.
•Methodology to automatically profile résumés of job candidates.•Text summarization of résumés improves performance.•Transformer Architectures for representing résumés as real vectors.•Profiles generated by applying hierarchical clustering to résumé embeddings.•Profile hierarchies useful to satisfy job offers.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Deep learning</subject><subject>Industry 4.0</subject><subject>Profiling</subject><subject>Public domain</subject><subject>Summarization</subject><subject>Transformer</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKeA59ZM0jYteJFFV2FhEfQcknTqpuy2a9Iq-kY-hy9mlnr2MgPD_8_88xFyCSwFBsV1m2L40ClnHFKAPOdwRGZQSpEUshLHZMaqXCYZyOyUnIXQMgaSMTkjT-uODhukY0DaNzSMu5327ksPru-o7mo6eN2Fpvc79FR7u3ED2mH0GGgc0r3vG7d13Sv1P9_RHMs5OWn0NuDFX5-Tl_u758VDslovHxe3q8QKXg5JlZWotWHWGiG4libnurbAM2NsYZBntraWWVFWjTa8YlaWoBkYlIXOEHIxJ1fT3pjhbcQwqLYffRdPKp6XnHMmcogqPqms70Pw2Ki9d_HFTwVMHdCpVh3QqQM6NaGLppvJhDH_u0OvgnXYWaydj9-runf_2X8Bdmh6dQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Bondielli, Alessandro</creator><creator>Marcelloni, Francesco</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3426-6643</orcidid><orcidid>https://orcid.org/0000-0002-5895-876X</orcidid></search><sort><creationdate>20211201</creationdate><title>On the use of summarization and transformer architectures for profiling résumés</title><author>Bondielli, Alessandro ; Marcelloni, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-948eaab0ccb332a7b52adc124bbc6be24cdcc0c389fab290c781a01be76a4e153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Deep learning</topic><topic>Industry 4.0</topic><topic>Profiling</topic><topic>Public domain</topic><topic>Summarization</topic><topic>Transformer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bondielli, Alessandro</creatorcontrib><creatorcontrib>Marcelloni, Francesco</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bondielli, Alessandro</au><au>Marcelloni, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the use of summarization and transformer architectures for profiling résumés</atitle><jtitle>Expert systems with applications</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>184</volume><spage>115521</spage><pages>115521-</pages><artnum>115521</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Profiling professional figures is becoming more and more crucial, as companies and recruiters face the challenges of Industry 4.0. On the one hand, demand for specific knowledge in professional figures is rising. On the other hand, workers try to broaden the spectrum of their skills in order to remain appealing in the job market. Therefore, research related to these topics is receiving more and more attention. In this paper, we propose a methodology to profile résumés based on summarization and transformer architectures for generating résumé embeddings and on hierarchical clustering algorithms for grouping these embeddings. We evaluate different strategies and show that our approach achieves promising results on a public domain dataset containing 1202 résumés.
•Methodology to automatically profile résumés of job candidates.•Text summarization of résumés improves performance.•Transformer Architectures for representing résumés as real vectors.•Profiles generated by applying hierarchical clustering to résumé embeddings.•Profile hierarchies useful to satisfy job offers.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2021.115521</doi><orcidid>https://orcid.org/0000-0003-3426-6643</orcidid><orcidid>https://orcid.org/0000-0002-5895-876X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2021-12, Vol.184, p.115521, Article 115521 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_journals_2582220351 |
source | ScienceDirect Freedom Collection |
subjects | Algorithms Cluster analysis Clustering Deep learning Industry 4.0 Profiling Public domain Summarization Transformer |
title | On the use of summarization and transformer architectures for profiling résumés |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20use%20of%20summarization%20and%20transformer%20architectures%20for%20profiling%20r%C3%A9sum%C3%A9s&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Bondielli,%20Alessandro&rft.date=2021-12-01&rft.volume=184&rft.spage=115521&rft.pages=115521-&rft.artnum=115521&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2021.115521&rft_dat=%3Cproquest_cross%3E2582220351%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-948eaab0ccb332a7b52adc124bbc6be24cdcc0c389fab290c781a01be76a4e153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582220351&rft_id=info:pmid/&rfr_iscdi=true |