Loading…

On the use of summarization and transformer architectures for profiling résumés

Profiling professional figures is becoming more and more crucial, as companies and recruiters face the challenges of Industry 4.0. On the one hand, demand for specific knowledge in professional figures is rising. On the other hand, workers try to broaden the spectrum of their skills in order to rema...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2021-12, Vol.184, p.115521, Article 115521
Main Authors: Bondielli, Alessandro, Marcelloni, Francesco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-948eaab0ccb332a7b52adc124bbc6be24cdcc0c389fab290c781a01be76a4e153
cites cdi_FETCH-LOGICAL-c328t-948eaab0ccb332a7b52adc124bbc6be24cdcc0c389fab290c781a01be76a4e153
container_end_page
container_issue
container_start_page 115521
container_title Expert systems with applications
container_volume 184
creator Bondielli, Alessandro
Marcelloni, Francesco
description Profiling professional figures is becoming more and more crucial, as companies and recruiters face the challenges of Industry 4.0. On the one hand, demand for specific knowledge in professional figures is rising. On the other hand, workers try to broaden the spectrum of their skills in order to remain appealing in the job market. Therefore, research related to these topics is receiving more and more attention. In this paper, we propose a methodology to profile résumés based on summarization and transformer architectures for generating résumé embeddings and on hierarchical clustering algorithms for grouping these embeddings. We evaluate different strategies and show that our approach achieves promising results on a public domain dataset containing 1202 résumés. •Methodology to automatically profile résumés of job candidates.•Text summarization of résumés improves performance.•Transformer Architectures for representing résumés as real vectors.•Profiles generated by applying hierarchical clustering to résumé embeddings.•Profile hierarchies useful to satisfy job offers.
doi_str_mv 10.1016/j.eswa.2021.115521
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582220351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417421009301</els_id><sourcerecordid>2582220351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-948eaab0ccb332a7b52adc124bbc6be24cdcc0c389fab290c781a01be76a4e153</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeA59ZM0jYteJFFV2FhEfQcknTqpuy2a9Iq-kY-hy9mlnr2MgPD_8_88xFyCSwFBsV1m2L40ClnHFKAPOdwRGZQSpEUshLHZMaqXCYZyOyUnIXQMgaSMTkjT-uODhukY0DaNzSMu5327ksPru-o7mo6eN2Fpvc79FR7u3ED2mH0GGgc0r3vG7d13Sv1P9_RHMs5OWn0NuDFX5-Tl_u758VDslovHxe3q8QKXg5JlZWotWHWGiG4libnurbAM2NsYZBntraWWVFWjTa8YlaWoBkYlIXOEHIxJ1fT3pjhbcQwqLYffRdPKp6XnHMmcogqPqms70Pw2Ki9d_HFTwVMHdCpVh3QqQM6NaGLppvJhDH_u0OvgnXYWaydj9-runf_2X8Bdmh6dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582220351</pqid></control><display><type>article</type><title>On the use of summarization and transformer architectures for profiling résumés</title><source>ScienceDirect Freedom Collection</source><creator>Bondielli, Alessandro ; Marcelloni, Francesco</creator><creatorcontrib>Bondielli, Alessandro ; Marcelloni, Francesco</creatorcontrib><description>Profiling professional figures is becoming more and more crucial, as companies and recruiters face the challenges of Industry 4.0. On the one hand, demand for specific knowledge in professional figures is rising. On the other hand, workers try to broaden the spectrum of their skills in order to remain appealing in the job market. Therefore, research related to these topics is receiving more and more attention. In this paper, we propose a methodology to profile résumés based on summarization and transformer architectures for generating résumé embeddings and on hierarchical clustering algorithms for grouping these embeddings. We evaluate different strategies and show that our approach achieves promising results on a public domain dataset containing 1202 résumés. •Methodology to automatically profile résumés of job candidates.•Text summarization of résumés improves performance.•Transformer Architectures for representing résumés as real vectors.•Profiles generated by applying hierarchical clustering to résumé embeddings.•Profile hierarchies useful to satisfy job offers.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2021.115521</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Deep learning ; Industry 4.0 ; Profiling ; Public domain ; Summarization ; Transformer</subject><ispartof>Expert systems with applications, 2021-12, Vol.184, p.115521, Article 115521</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-948eaab0ccb332a7b52adc124bbc6be24cdcc0c389fab290c781a01be76a4e153</citedby><cites>FETCH-LOGICAL-c328t-948eaab0ccb332a7b52adc124bbc6be24cdcc0c389fab290c781a01be76a4e153</cites><orcidid>0000-0003-3426-6643 ; 0000-0002-5895-876X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bondielli, Alessandro</creatorcontrib><creatorcontrib>Marcelloni, Francesco</creatorcontrib><title>On the use of summarization and transformer architectures for profiling résumés</title><title>Expert systems with applications</title><description>Profiling professional figures is becoming more and more crucial, as companies and recruiters face the challenges of Industry 4.0. On the one hand, demand for specific knowledge in professional figures is rising. On the other hand, workers try to broaden the spectrum of their skills in order to remain appealing in the job market. Therefore, research related to these topics is receiving more and more attention. In this paper, we propose a methodology to profile résumés based on summarization and transformer architectures for generating résumé embeddings and on hierarchical clustering algorithms for grouping these embeddings. We evaluate different strategies and show that our approach achieves promising results on a public domain dataset containing 1202 résumés. •Methodology to automatically profile résumés of job candidates.•Text summarization of résumés improves performance.•Transformer Architectures for representing résumés as real vectors.•Profiles generated by applying hierarchical clustering to résumé embeddings.•Profile hierarchies useful to satisfy job offers.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Deep learning</subject><subject>Industry 4.0</subject><subject>Profiling</subject><subject>Public domain</subject><subject>Summarization</subject><subject>Transformer</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKeA59ZM0jYteJFFV2FhEfQcknTqpuy2a9Iq-kY-hy9mlnr2MgPD_8_88xFyCSwFBsV1m2L40ClnHFKAPOdwRGZQSpEUshLHZMaqXCYZyOyUnIXQMgaSMTkjT-uODhukY0DaNzSMu5327ksPru-o7mo6eN2Fpvc79FR7u3ED2mH0GGgc0r3vG7d13Sv1P9_RHMs5OWn0NuDFX5-Tl_u758VDslovHxe3q8QKXg5JlZWotWHWGiG4libnurbAM2NsYZBntraWWVFWjTa8YlaWoBkYlIXOEHIxJ1fT3pjhbcQwqLYffRdPKp6XnHMmcogqPqms70Pw2Ki9d_HFTwVMHdCpVh3QqQM6NaGLppvJhDH_u0OvgnXYWaydj9-runf_2X8Bdmh6dQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Bondielli, Alessandro</creator><creator>Marcelloni, Francesco</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3426-6643</orcidid><orcidid>https://orcid.org/0000-0002-5895-876X</orcidid></search><sort><creationdate>20211201</creationdate><title>On the use of summarization and transformer architectures for profiling résumés</title><author>Bondielli, Alessandro ; Marcelloni, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-948eaab0ccb332a7b52adc124bbc6be24cdcc0c389fab290c781a01be76a4e153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Deep learning</topic><topic>Industry 4.0</topic><topic>Profiling</topic><topic>Public domain</topic><topic>Summarization</topic><topic>Transformer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bondielli, Alessandro</creatorcontrib><creatorcontrib>Marcelloni, Francesco</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bondielli, Alessandro</au><au>Marcelloni, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the use of summarization and transformer architectures for profiling résumés</atitle><jtitle>Expert systems with applications</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>184</volume><spage>115521</spage><pages>115521-</pages><artnum>115521</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Profiling professional figures is becoming more and more crucial, as companies and recruiters face the challenges of Industry 4.0. On the one hand, demand for specific knowledge in professional figures is rising. On the other hand, workers try to broaden the spectrum of their skills in order to remain appealing in the job market. Therefore, research related to these topics is receiving more and more attention. In this paper, we propose a methodology to profile résumés based on summarization and transformer architectures for generating résumé embeddings and on hierarchical clustering algorithms for grouping these embeddings. We evaluate different strategies and show that our approach achieves promising results on a public domain dataset containing 1202 résumés. •Methodology to automatically profile résumés of job candidates.•Text summarization of résumés improves performance.•Transformer Architectures for representing résumés as real vectors.•Profiles generated by applying hierarchical clustering to résumé embeddings.•Profile hierarchies useful to satisfy job offers.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2021.115521</doi><orcidid>https://orcid.org/0000-0003-3426-6643</orcidid><orcidid>https://orcid.org/0000-0002-5895-876X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2021-12, Vol.184, p.115521, Article 115521
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2582220351
source ScienceDirect Freedom Collection
subjects Algorithms
Cluster analysis
Clustering
Deep learning
Industry 4.0
Profiling
Public domain
Summarization
Transformer
title On the use of summarization and transformer architectures for profiling résumés
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20use%20of%20summarization%20and%20transformer%20architectures%20for%20profiling%20r%C3%A9sum%C3%A9s&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Bondielli,%20Alessandro&rft.date=2021-12-01&rft.volume=184&rft.spage=115521&rft.pages=115521-&rft.artnum=115521&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2021.115521&rft_dat=%3Cproquest_cross%3E2582220351%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-948eaab0ccb332a7b52adc124bbc6be24cdcc0c389fab290c781a01be76a4e153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582220351&rft_id=info:pmid/&rfr_iscdi=true