Loading…

Circuit complexity as a novel probe of quantum entanglement: A study with black hole gas in arbitrary dimensions

In this article, we investigate the quantum circuit complexity and entanglement entropy in the recently studied black hole gas framework using the two-mode squeezed states formalism written in arbitrary dimensional spatially flat cosmological Friedmann-Lemaître-Robertson-Walker background space-time...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. D 2021-09, Vol.104 (6), p.1, Article 065002
Main Authors: Adhikari, Kiran, Choudhury, Sayantan, Chowdhury, Satyaki, Shirish, K., Swain, Abinash
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-ac785d1d4f2bf9c667d6aa385ea8d49f75d9be431a6d80b0ac0f2855a28df5893
cites cdi_FETCH-LOGICAL-c322t-ac785d1d4f2bf9c667d6aa385ea8d49f75d9be431a6d80b0ac0f2855a28df5893
container_end_page
container_issue 6
container_start_page 1
container_title Physical review. D
container_volume 104
creator Adhikari, Kiran
Choudhury, Sayantan
Chowdhury, Satyaki
Shirish, K.
Swain, Abinash
description In this article, we investigate the quantum circuit complexity and entanglement entropy in the recently studied black hole gas framework using the two-mode squeezed states formalism written in arbitrary dimensional spatially flat cosmological Friedmann-Lemaître-Robertson-Walker background space-time. We compute the various complexity measures and study the evolution of these complexities by following two different prescriptions viz the covariant matrix method and Nielsen's method. Independently, using the two-mode squeezed states formalism we also compute the Rényi and von-Neumann entanglement entropy, which show an inherent connection between the entanglement entropy and quantum circuit complexity. We study the behavior of the complexity measures and entanglement entropy separately for three different spatial dimensions and observe various significant different features in three spatial dimensions on the evolution of these quantities with respect to the scale factor. Furthermore, we also study the underlying behavior of the equilibrium temperature with two of the most essential quantities i.e., rate of change of complexity with scale factor and the entanglement entropy. We observe that irrespective of the spatial dimension, the equilibrium temperature depends quartically on entanglement entropy.
doi_str_mv 10.1103/PhysRevD.104.065002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582222322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582222322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-ac785d1d4f2bf9c667d6aa385ea8d49f75d9be431a6d80b0ac0f2855a28df5893</originalsourceid><addsrcrecordid>eNo9UMtOwzAQjBBIVKVfwGUlzim2EycOt6o8pUogBOfI8aN1SePUdgr5e4wK7GVHq9mZ3UmSS4zmGKPs-mUz-ld1uJ1jlM9RQREiJ8mE5CVKI6xO_zFG58nM-y2KsEBVifEk6ZfGicEEEHbXt-rLhBG4Bw6dPagWemcbBVbDfuBdGHagusC7dat2EdzAAnwY5AifJmygabn4gI1tFayjhOmAu8YEx90I0sQFb2znL5IzzVuvZr99mrzf370tH9PV88PTcrFKRUZISLkoGZVY5po0uhJFUcqC84xRxZnMK11SWTUqzzAvJEMN4gJpwijlhElNWZVNk6ujbnxhPygf6q0dXBcta0IZiRV9Iis7soSz3jul696ZXby4xqj-Sbf-SzcO8vqYbvYNgmpwpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582222322</pqid></control><display><type>article</type><title>Circuit complexity as a novel probe of quantum entanglement: A study with black hole gas in arbitrary dimensions</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Adhikari, Kiran ; Choudhury, Sayantan ; Chowdhury, Satyaki ; Shirish, K. ; Swain, Abinash</creator><creatorcontrib>Adhikari, Kiran ; Choudhury, Sayantan ; Chowdhury, Satyaki ; Shirish, K. ; Swain, Abinash</creatorcontrib><description>In this article, we investigate the quantum circuit complexity and entanglement entropy in the recently studied black hole gas framework using the two-mode squeezed states formalism written in arbitrary dimensional spatially flat cosmological Friedmann-Lemaître-Robertson-Walker background space-time. We compute the various complexity measures and study the evolution of these complexities by following two different prescriptions viz the covariant matrix method and Nielsen's method. Independently, using the two-mode squeezed states formalism we also compute the Rényi and von-Neumann entanglement entropy, which show an inherent connection between the entanglement entropy and quantum circuit complexity. We study the behavior of the complexity measures and entanglement entropy separately for three different spatial dimensions and observe various significant different features in three spatial dimensions on the evolution of these quantities with respect to the scale factor. Furthermore, we also study the underlying behavior of the equilibrium temperature with two of the most essential quantities i.e., rate of change of complexity with scale factor and the entanglement entropy. We observe that irrespective of the spatial dimension, the equilibrium temperature depends quartically on entanglement entropy.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.104.065002</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Black holes ; Circuits ; Complexity ; Entropy ; Evolution ; Formalism ; Quantum entanglement ; Squeezed states (quantum theory)</subject><ispartof>Physical review. D, 2021-09, Vol.104 (6), p.1, Article 065002</ispartof><rights>Copyright American Physical Society Sep 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-ac785d1d4f2bf9c667d6aa385ea8d49f75d9be431a6d80b0ac0f2855a28df5893</citedby><cites>FETCH-LOGICAL-c322t-ac785d1d4f2bf9c667d6aa385ea8d49f75d9be431a6d80b0ac0f2855a28df5893</cites><orcidid>0000-0002-2218-1899 ; 0000-0002-5912-1515 ; 0000-0002-0459-3873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Adhikari, Kiran</creatorcontrib><creatorcontrib>Choudhury, Sayantan</creatorcontrib><creatorcontrib>Chowdhury, Satyaki</creatorcontrib><creatorcontrib>Shirish, K.</creatorcontrib><creatorcontrib>Swain, Abinash</creatorcontrib><title>Circuit complexity as a novel probe of quantum entanglement: A study with black hole gas in arbitrary dimensions</title><title>Physical review. D</title><description>In this article, we investigate the quantum circuit complexity and entanglement entropy in the recently studied black hole gas framework using the two-mode squeezed states formalism written in arbitrary dimensional spatially flat cosmological Friedmann-Lemaître-Robertson-Walker background space-time. We compute the various complexity measures and study the evolution of these complexities by following two different prescriptions viz the covariant matrix method and Nielsen's method. Independently, using the two-mode squeezed states formalism we also compute the Rényi and von-Neumann entanglement entropy, which show an inherent connection between the entanglement entropy and quantum circuit complexity. We study the behavior of the complexity measures and entanglement entropy separately for three different spatial dimensions and observe various significant different features in three spatial dimensions on the evolution of these quantities with respect to the scale factor. Furthermore, we also study the underlying behavior of the equilibrium temperature with two of the most essential quantities i.e., rate of change of complexity with scale factor and the entanglement entropy. We observe that irrespective of the spatial dimension, the equilibrium temperature depends quartically on entanglement entropy.</description><subject>Black holes</subject><subject>Circuits</subject><subject>Complexity</subject><subject>Entropy</subject><subject>Evolution</subject><subject>Formalism</subject><subject>Quantum entanglement</subject><subject>Squeezed states (quantum theory)</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQjBBIVKVfwGUlzim2EycOt6o8pUogBOfI8aN1SePUdgr5e4wK7GVHq9mZ3UmSS4zmGKPs-mUz-ld1uJ1jlM9RQREiJ8mE5CVKI6xO_zFG58nM-y2KsEBVifEk6ZfGicEEEHbXt-rLhBG4Bw6dPagWemcbBVbDfuBdGHagusC7dat2EdzAAnwY5AifJmygabn4gI1tFayjhOmAu8YEx90I0sQFb2znL5IzzVuvZr99mrzf370tH9PV88PTcrFKRUZISLkoGZVY5po0uhJFUcqC84xRxZnMK11SWTUqzzAvJEMN4gJpwijlhElNWZVNk6ujbnxhPygf6q0dXBcta0IZiRV9Iis7soSz3jul696ZXby4xqj-Sbf-SzcO8vqYbvYNgmpwpQ</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Adhikari, Kiran</creator><creator>Choudhury, Sayantan</creator><creator>Chowdhury, Satyaki</creator><creator>Shirish, K.</creator><creator>Swain, Abinash</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2218-1899</orcidid><orcidid>https://orcid.org/0000-0002-5912-1515</orcidid><orcidid>https://orcid.org/0000-0002-0459-3873</orcidid></search><sort><creationdate>20210915</creationdate><title>Circuit complexity as a novel probe of quantum entanglement: A study with black hole gas in arbitrary dimensions</title><author>Adhikari, Kiran ; Choudhury, Sayantan ; Chowdhury, Satyaki ; Shirish, K. ; Swain, Abinash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-ac785d1d4f2bf9c667d6aa385ea8d49f75d9be431a6d80b0ac0f2855a28df5893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Black holes</topic><topic>Circuits</topic><topic>Complexity</topic><topic>Entropy</topic><topic>Evolution</topic><topic>Formalism</topic><topic>Quantum entanglement</topic><topic>Squeezed states (quantum theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhikari, Kiran</creatorcontrib><creatorcontrib>Choudhury, Sayantan</creatorcontrib><creatorcontrib>Chowdhury, Satyaki</creatorcontrib><creatorcontrib>Shirish, K.</creatorcontrib><creatorcontrib>Swain, Abinash</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhikari, Kiran</au><au>Choudhury, Sayantan</au><au>Chowdhury, Satyaki</au><au>Shirish, K.</au><au>Swain, Abinash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circuit complexity as a novel probe of quantum entanglement: A study with black hole gas in arbitrary dimensions</atitle><jtitle>Physical review. D</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>104</volume><issue>6</issue><spage>1</spage><pages>1-</pages><artnum>065002</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>In this article, we investigate the quantum circuit complexity and entanglement entropy in the recently studied black hole gas framework using the two-mode squeezed states formalism written in arbitrary dimensional spatially flat cosmological Friedmann-Lemaître-Robertson-Walker background space-time. We compute the various complexity measures and study the evolution of these complexities by following two different prescriptions viz the covariant matrix method and Nielsen's method. Independently, using the two-mode squeezed states formalism we also compute the Rényi and von-Neumann entanglement entropy, which show an inherent connection between the entanglement entropy and quantum circuit complexity. We study the behavior of the complexity measures and entanglement entropy separately for three different spatial dimensions and observe various significant different features in three spatial dimensions on the evolution of these quantities with respect to the scale factor. Furthermore, we also study the underlying behavior of the equilibrium temperature with two of the most essential quantities i.e., rate of change of complexity with scale factor and the entanglement entropy. We observe that irrespective of the spatial dimension, the equilibrium temperature depends quartically on entanglement entropy.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.104.065002</doi><orcidid>https://orcid.org/0000-0002-2218-1899</orcidid><orcidid>https://orcid.org/0000-0002-5912-1515</orcidid><orcidid>https://orcid.org/0000-0002-0459-3873</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2021-09, Vol.104 (6), p.1, Article 065002
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2582222322
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Black holes
Circuits
Complexity
Entropy
Evolution
Formalism
Quantum entanglement
Squeezed states (quantum theory)
title Circuit complexity as a novel probe of quantum entanglement: A study with black hole gas in arbitrary dimensions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circuit%20complexity%20as%20a%20novel%20probe%20of%20quantum%20entanglement:%20A%20study%20with%20black%20hole%20gas%20in%20arbitrary%20dimensions&rft.jtitle=Physical%20review.%20D&rft.au=Adhikari,%20Kiran&rft.date=2021-09-15&rft.volume=104&rft.issue=6&rft.spage=1&rft.pages=1-&rft.artnum=065002&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.104.065002&rft_dat=%3Cproquest_cross%3E2582222322%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-ac785d1d4f2bf9c667d6aa385ea8d49f75d9be431a6d80b0ac0f2855a28df5893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582222322&rft_id=info:pmid/&rfr_iscdi=true