Loading…
Circuit complexity as a novel probe of quantum entanglement: A study with black hole gas in arbitrary dimensions
In this article, we investigate the quantum circuit complexity and entanglement entropy in the recently studied black hole gas framework using the two-mode squeezed states formalism written in arbitrary dimensional spatially flat cosmological Friedmann-Lemaître-Robertson-Walker background space-time...
Saved in:
Published in: | Physical review. D 2021-09, Vol.104 (6), p.1, Article 065002 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-ac785d1d4f2bf9c667d6aa385ea8d49f75d9be431a6d80b0ac0f2855a28df5893 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-ac785d1d4f2bf9c667d6aa385ea8d49f75d9be431a6d80b0ac0f2855a28df5893 |
container_end_page | |
container_issue | 6 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 104 |
creator | Adhikari, Kiran Choudhury, Sayantan Chowdhury, Satyaki Shirish, K. Swain, Abinash |
description | In this article, we investigate the quantum circuit complexity and entanglement entropy in the recently studied black hole gas framework using the two-mode squeezed states formalism written in arbitrary dimensional spatially flat cosmological Friedmann-Lemaître-Robertson-Walker background space-time. We compute the various complexity measures and study the evolution of these complexities by following two different prescriptions viz the covariant matrix method and Nielsen's method. Independently, using the two-mode squeezed states formalism we also compute the Rényi and von-Neumann entanglement entropy, which show an inherent connection between the entanglement entropy and quantum circuit complexity. We study the behavior of the complexity measures and entanglement entropy separately for three different spatial dimensions and observe various significant different features in three spatial dimensions on the evolution of these quantities with respect to the scale factor. Furthermore, we also study the underlying behavior of the equilibrium temperature with two of the most essential quantities i.e., rate of change of complexity with scale factor and the entanglement entropy. We observe that irrespective of the spatial dimension, the equilibrium temperature depends quartically on entanglement entropy. |
doi_str_mv | 10.1103/PhysRevD.104.065002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582222322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582222322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-ac785d1d4f2bf9c667d6aa385ea8d49f75d9be431a6d80b0ac0f2855a28df5893</originalsourceid><addsrcrecordid>eNo9UMtOwzAQjBBIVKVfwGUlzim2EycOt6o8pUogBOfI8aN1SePUdgr5e4wK7GVHq9mZ3UmSS4zmGKPs-mUz-ld1uJ1jlM9RQREiJ8mE5CVKI6xO_zFG58nM-y2KsEBVifEk6ZfGicEEEHbXt-rLhBG4Bw6dPagWemcbBVbDfuBdGHagusC7dat2EdzAAnwY5AifJmygabn4gI1tFayjhOmAu8YEx90I0sQFb2znL5IzzVuvZr99mrzf370tH9PV88PTcrFKRUZISLkoGZVY5po0uhJFUcqC84xRxZnMK11SWTUqzzAvJEMN4gJpwijlhElNWZVNk6ujbnxhPygf6q0dXBcta0IZiRV9Iis7soSz3jul696ZXby4xqj-Sbf-SzcO8vqYbvYNgmpwpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582222322</pqid></control><display><type>article</type><title>Circuit complexity as a novel probe of quantum entanglement: A study with black hole gas in arbitrary dimensions</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Adhikari, Kiran ; Choudhury, Sayantan ; Chowdhury, Satyaki ; Shirish, K. ; Swain, Abinash</creator><creatorcontrib>Adhikari, Kiran ; Choudhury, Sayantan ; Chowdhury, Satyaki ; Shirish, K. ; Swain, Abinash</creatorcontrib><description>In this article, we investigate the quantum circuit complexity and entanglement entropy in the recently studied black hole gas framework using the two-mode squeezed states formalism written in arbitrary dimensional spatially flat cosmological Friedmann-Lemaître-Robertson-Walker background space-time. We compute the various complexity measures and study the evolution of these complexities by following two different prescriptions viz the covariant matrix method and Nielsen's method. Independently, using the two-mode squeezed states formalism we also compute the Rényi and von-Neumann entanglement entropy, which show an inherent connection between the entanglement entropy and quantum circuit complexity. We study the behavior of the complexity measures and entanglement entropy separately for three different spatial dimensions and observe various significant different features in three spatial dimensions on the evolution of these quantities with respect to the scale factor. Furthermore, we also study the underlying behavior of the equilibrium temperature with two of the most essential quantities i.e., rate of change of complexity with scale factor and the entanglement entropy. We observe that irrespective of the spatial dimension, the equilibrium temperature depends quartically on entanglement entropy.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.104.065002</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Black holes ; Circuits ; Complexity ; Entropy ; Evolution ; Formalism ; Quantum entanglement ; Squeezed states (quantum theory)</subject><ispartof>Physical review. D, 2021-09, Vol.104 (6), p.1, Article 065002</ispartof><rights>Copyright American Physical Society Sep 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-ac785d1d4f2bf9c667d6aa385ea8d49f75d9be431a6d80b0ac0f2855a28df5893</citedby><cites>FETCH-LOGICAL-c322t-ac785d1d4f2bf9c667d6aa385ea8d49f75d9be431a6d80b0ac0f2855a28df5893</cites><orcidid>0000-0002-2218-1899 ; 0000-0002-5912-1515 ; 0000-0002-0459-3873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Adhikari, Kiran</creatorcontrib><creatorcontrib>Choudhury, Sayantan</creatorcontrib><creatorcontrib>Chowdhury, Satyaki</creatorcontrib><creatorcontrib>Shirish, K.</creatorcontrib><creatorcontrib>Swain, Abinash</creatorcontrib><title>Circuit complexity as a novel probe of quantum entanglement: A study with black hole gas in arbitrary dimensions</title><title>Physical review. D</title><description>In this article, we investigate the quantum circuit complexity and entanglement entropy in the recently studied black hole gas framework using the two-mode squeezed states formalism written in arbitrary dimensional spatially flat cosmological Friedmann-Lemaître-Robertson-Walker background space-time. We compute the various complexity measures and study the evolution of these complexities by following two different prescriptions viz the covariant matrix method and Nielsen's method. Independently, using the two-mode squeezed states formalism we also compute the Rényi and von-Neumann entanglement entropy, which show an inherent connection between the entanglement entropy and quantum circuit complexity. We study the behavior of the complexity measures and entanglement entropy separately for three different spatial dimensions and observe various significant different features in three spatial dimensions on the evolution of these quantities with respect to the scale factor. Furthermore, we also study the underlying behavior of the equilibrium temperature with two of the most essential quantities i.e., rate of change of complexity with scale factor and the entanglement entropy. We observe that irrespective of the spatial dimension, the equilibrium temperature depends quartically on entanglement entropy.</description><subject>Black holes</subject><subject>Circuits</subject><subject>Complexity</subject><subject>Entropy</subject><subject>Evolution</subject><subject>Formalism</subject><subject>Quantum entanglement</subject><subject>Squeezed states (quantum theory)</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQjBBIVKVfwGUlzim2EycOt6o8pUogBOfI8aN1SePUdgr5e4wK7GVHq9mZ3UmSS4zmGKPs-mUz-ld1uJ1jlM9RQREiJ8mE5CVKI6xO_zFG58nM-y2KsEBVifEk6ZfGicEEEHbXt-rLhBG4Bw6dPagWemcbBVbDfuBdGHagusC7dat2EdzAAnwY5AifJmygabn4gI1tFayjhOmAu8YEx90I0sQFb2znL5IzzVuvZr99mrzf370tH9PV88PTcrFKRUZISLkoGZVY5po0uhJFUcqC84xRxZnMK11SWTUqzzAvJEMN4gJpwijlhElNWZVNk6ujbnxhPygf6q0dXBcta0IZiRV9Iis7soSz3jul696ZXby4xqj-Sbf-SzcO8vqYbvYNgmpwpQ</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Adhikari, Kiran</creator><creator>Choudhury, Sayantan</creator><creator>Chowdhury, Satyaki</creator><creator>Shirish, K.</creator><creator>Swain, Abinash</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2218-1899</orcidid><orcidid>https://orcid.org/0000-0002-5912-1515</orcidid><orcidid>https://orcid.org/0000-0002-0459-3873</orcidid></search><sort><creationdate>20210915</creationdate><title>Circuit complexity as a novel probe of quantum entanglement: A study with black hole gas in arbitrary dimensions</title><author>Adhikari, Kiran ; Choudhury, Sayantan ; Chowdhury, Satyaki ; Shirish, K. ; Swain, Abinash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-ac785d1d4f2bf9c667d6aa385ea8d49f75d9be431a6d80b0ac0f2855a28df5893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Black holes</topic><topic>Circuits</topic><topic>Complexity</topic><topic>Entropy</topic><topic>Evolution</topic><topic>Formalism</topic><topic>Quantum entanglement</topic><topic>Squeezed states (quantum theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhikari, Kiran</creatorcontrib><creatorcontrib>Choudhury, Sayantan</creatorcontrib><creatorcontrib>Chowdhury, Satyaki</creatorcontrib><creatorcontrib>Shirish, K.</creatorcontrib><creatorcontrib>Swain, Abinash</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhikari, Kiran</au><au>Choudhury, Sayantan</au><au>Chowdhury, Satyaki</au><au>Shirish, K.</au><au>Swain, Abinash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circuit complexity as a novel probe of quantum entanglement: A study with black hole gas in arbitrary dimensions</atitle><jtitle>Physical review. D</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>104</volume><issue>6</issue><spage>1</spage><pages>1-</pages><artnum>065002</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>In this article, we investigate the quantum circuit complexity and entanglement entropy in the recently studied black hole gas framework using the two-mode squeezed states formalism written in arbitrary dimensional spatially flat cosmological Friedmann-Lemaître-Robertson-Walker background space-time. We compute the various complexity measures and study the evolution of these complexities by following two different prescriptions viz the covariant matrix method and Nielsen's method. Independently, using the two-mode squeezed states formalism we also compute the Rényi and von-Neumann entanglement entropy, which show an inherent connection between the entanglement entropy and quantum circuit complexity. We study the behavior of the complexity measures and entanglement entropy separately for three different spatial dimensions and observe various significant different features in three spatial dimensions on the evolution of these quantities with respect to the scale factor. Furthermore, we also study the underlying behavior of the equilibrium temperature with two of the most essential quantities i.e., rate of change of complexity with scale factor and the entanglement entropy. We observe that irrespective of the spatial dimension, the equilibrium temperature depends quartically on entanglement entropy.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.104.065002</doi><orcidid>https://orcid.org/0000-0002-2218-1899</orcidid><orcidid>https://orcid.org/0000-0002-5912-1515</orcidid><orcidid>https://orcid.org/0000-0002-0459-3873</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2021-09, Vol.104 (6), p.1, Article 065002 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2582222322 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Black holes Circuits Complexity Entropy Evolution Formalism Quantum entanglement Squeezed states (quantum theory) |
title | Circuit complexity as a novel probe of quantum entanglement: A study with black hole gas in arbitrary dimensions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circuit%20complexity%20as%20a%20novel%20probe%20of%20quantum%20entanglement:%20A%20study%20with%20black%20hole%20gas%20in%20arbitrary%20dimensions&rft.jtitle=Physical%20review.%20D&rft.au=Adhikari,%20Kiran&rft.date=2021-09-15&rft.volume=104&rft.issue=6&rft.spage=1&rft.pages=1-&rft.artnum=065002&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.104.065002&rft_dat=%3Cproquest_cross%3E2582222322%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-ac785d1d4f2bf9c667d6aa385ea8d49f75d9be431a6d80b0ac0f2855a28df5893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582222322&rft_id=info:pmid/&rfr_iscdi=true |