Loading…

Truncated sums for the partition function and a problem of Merca

In 2012, Andrews and Merca established a truncated form of Euler’s pentagonal number theory. In this note, using the Rogers–Fine identity, we present a partition theoretic interpretation of truncated sums on the partition function which solve a problem given by Merca. Furthermore, we prove an inequa...

Full description

Saved in:
Bibliographic Details
Published in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2022, Vol.116 (1), Article 22
Main Authors: Xia, Ernest X. W., Zhao, Xiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-221f51a9b3fd47f176328ef4328a68187a95514327bdc805ee05d179e5d4ab683
cites cdi_FETCH-LOGICAL-c319t-221f51a9b3fd47f176328ef4328a68187a95514327bdc805ee05d179e5d4ab683
container_end_page
container_issue 1
container_start_page
container_title Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas
container_volume 116
creator Xia, Ernest X. W.
Zhao, Xiang
description In 2012, Andrews and Merca established a truncated form of Euler’s pentagonal number theory. In this note, using the Rogers–Fine identity, we present a partition theoretic interpretation of truncated sums on the partition function which solve a problem given by Merca. Furthermore, we prove an inequality on ordinary partition which implies the positive result on truncated sums of partition function due to Andrews and Merca.
doi_str_mv 10.1007/s13398-021-01167-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582584322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582584322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-221f51a9b3fd47f176328ef4328a68187a95514327bdc805ee05d179e5d4ab683</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLgsu4f8BTwHM0kTZPelMUvWPGynkPaJNpl29SkPfjvja3gzWGYD-a9meEhdAn0GiiVNwk4rxShDAgFKCUpTtAKhKwICCpO51oRySk_R5uUDjQbh0JRuUK3-zj1jRmdxWnqEvYh4vHD4cHEsR3b0GOf53NheosNHmKoj67DweMXFxtzgc68OSa3-c1r9PZwv98-kd3r4_P2bkcaDtVIGAMvwFQ197aQHmTJmXK-yNGUCpQ0lRCQW1nbRlHhHBUWZOWELUxdKr5GV8ve_MDn5NKoD2GKfT6pmVDZM5dlFFtQTQwpRef1ENvOxC8NVP-IpRexdBZLz2LpIpP4QkoZ3L-7-Lf6H9Y32kJqhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582584322</pqid></control><display><type>article</type><title>Truncated sums for the partition function and a problem of Merca</title><source>Springer Nature</source><creator>Xia, Ernest X. W. ; Zhao, Xiang</creator><creatorcontrib>Xia, Ernest X. W. ; Zhao, Xiang</creatorcontrib><description>In 2012, Andrews and Merca established a truncated form of Euler’s pentagonal number theory. In this note, using the Rogers–Fine identity, we present a partition theoretic interpretation of truncated sums on the partition function which solve a problem given by Merca. Furthermore, we prove an inequality on ordinary partition which implies the positive result on truncated sums of partition function due to Andrews and Merca.</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-021-01167-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Number theory ; Original Paper ; Partitions (mathematics) ; Sums ; Theoretical</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2022, Vol.116 (1), Article 22</ispartof><rights>The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2021</rights><rights>The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-221f51a9b3fd47f176328ef4328a68187a95514327bdc805ee05d179e5d4ab683</citedby><cites>FETCH-LOGICAL-c319t-221f51a9b3fd47f176328ef4328a68187a95514327bdc805ee05d179e5d4ab683</cites><orcidid>0000-0002-9484-5156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xia, Ernest X. W.</creatorcontrib><creatorcontrib>Zhao, Xiang</creatorcontrib><title>Truncated sums for the partition function and a problem of Merca</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><addtitle>RACSAM</addtitle><description>In 2012, Andrews and Merca established a truncated form of Euler’s pentagonal number theory. In this note, using the Rogers–Fine identity, we present a partition theoretic interpretation of truncated sums on the partition function which solve a problem given by Merca. Furthermore, we prove an inequality on ordinary partition which implies the positive result on truncated sums of partition function due to Andrews and Merca.</description><subject>Applications of Mathematics</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number theory</subject><subject>Original Paper</subject><subject>Partitions (mathematics)</subject><subject>Sums</subject><subject>Theoretical</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLgsu4f8BTwHM0kTZPelMUvWPGynkPaJNpl29SkPfjvja3gzWGYD-a9meEhdAn0GiiVNwk4rxShDAgFKCUpTtAKhKwICCpO51oRySk_R5uUDjQbh0JRuUK3-zj1jRmdxWnqEvYh4vHD4cHEsR3b0GOf53NheosNHmKoj67DweMXFxtzgc68OSa3-c1r9PZwv98-kd3r4_P2bkcaDtVIGAMvwFQ197aQHmTJmXK-yNGUCpQ0lRCQW1nbRlHhHBUWZOWELUxdKr5GV8ve_MDn5NKoD2GKfT6pmVDZM5dlFFtQTQwpRef1ENvOxC8NVP-IpRexdBZLz2LpIpP4QkoZ3L-7-Lf6H9Y32kJqhg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Xia, Ernest X. W.</creator><creator>Zhao, Xiang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9484-5156</orcidid></search><sort><creationdate>2022</creationdate><title>Truncated sums for the partition function and a problem of Merca</title><author>Xia, Ernest X. W. ; Zhao, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-221f51a9b3fd47f176328ef4328a68187a95514327bdc805ee05d179e5d4ab683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number theory</topic><topic>Original Paper</topic><topic>Partitions (mathematics)</topic><topic>Sums</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Ernest X. W.</creatorcontrib><creatorcontrib>Zhao, Xiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Ernest X. W.</au><au>Zhao, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Truncated sums for the partition function and a problem of Merca</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><stitle>RACSAM</stitle><date>2022</date><risdate>2022</risdate><volume>116</volume><issue>1</issue><artnum>22</artnum><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>In 2012, Andrews and Merca established a truncated form of Euler’s pentagonal number theory. In this note, using the Rogers–Fine identity, we present a partition theoretic interpretation of truncated sums on the partition function which solve a problem given by Merca. Furthermore, we prove an inequality on ordinary partition which implies the positive result on truncated sums of partition function due to Andrews and Merca.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13398-021-01167-4</doi><orcidid>https://orcid.org/0000-0002-9484-5156</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1578-7303
ispartof Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2022, Vol.116 (1), Article 22
issn 1578-7303
1579-1505
language eng
recordid cdi_proquest_journals_2582584322
source Springer Nature
subjects Applications of Mathematics
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Number theory
Original Paper
Partitions (mathematics)
Sums
Theoretical
title Truncated sums for the partition function and a problem of Merca
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Truncated%20sums%20for%20the%20partition%20function%20and%20a%20problem%20of%20Merca&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=Xia,%20Ernest%20X.%20W.&rft.date=2022&rft.volume=116&rft.issue=1&rft.artnum=22&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-021-01167-4&rft_dat=%3Cproquest_cross%3E2582584322%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-221f51a9b3fd47f176328ef4328a68187a95514327bdc805ee05d179e5d4ab683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582584322&rft_id=info:pmid/&rfr_iscdi=true