Loading…
Truncated sums for the partition function and a problem of Merca
In 2012, Andrews and Merca established a truncated form of Euler’s pentagonal number theory. In this note, using the Rogers–Fine identity, we present a partition theoretic interpretation of truncated sums on the partition function which solve a problem given by Merca. Furthermore, we prove an inequa...
Saved in:
Published in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2022, Vol.116 (1), Article 22 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-221f51a9b3fd47f176328ef4328a68187a95514327bdc805ee05d179e5d4ab683 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-221f51a9b3fd47f176328ef4328a68187a95514327bdc805ee05d179e5d4ab683 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas |
container_volume | 116 |
creator | Xia, Ernest X. W. Zhao, Xiang |
description | In 2012, Andrews and Merca established a truncated form of Euler’s pentagonal number theory. In this note, using the Rogers–Fine identity, we present a partition theoretic interpretation of truncated sums on the partition function which solve a problem given by Merca. Furthermore, we prove an inequality on ordinary partition which implies the positive result on truncated sums of partition function due to Andrews and Merca. |
doi_str_mv | 10.1007/s13398-021-01167-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582584322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582584322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-221f51a9b3fd47f176328ef4328a68187a95514327bdc805ee05d179e5d4ab683</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLgsu4f8BTwHM0kTZPelMUvWPGynkPaJNpl29SkPfjvja3gzWGYD-a9meEhdAn0GiiVNwk4rxShDAgFKCUpTtAKhKwICCpO51oRySk_R5uUDjQbh0JRuUK3-zj1jRmdxWnqEvYh4vHD4cHEsR3b0GOf53NheosNHmKoj67DweMXFxtzgc68OSa3-c1r9PZwv98-kd3r4_P2bkcaDtVIGAMvwFQ197aQHmTJmXK-yNGUCpQ0lRCQW1nbRlHhHBUWZOWELUxdKr5GV8ve_MDn5NKoD2GKfT6pmVDZM5dlFFtQTQwpRef1ENvOxC8NVP-IpRexdBZLz2LpIpP4QkoZ3L-7-Lf6H9Y32kJqhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582584322</pqid></control><display><type>article</type><title>Truncated sums for the partition function and a problem of Merca</title><source>Springer Nature</source><creator>Xia, Ernest X. W. ; Zhao, Xiang</creator><creatorcontrib>Xia, Ernest X. W. ; Zhao, Xiang</creatorcontrib><description>In 2012, Andrews and Merca established a truncated form of Euler’s pentagonal number theory. In this note, using the Rogers–Fine identity, we present a partition theoretic interpretation of truncated sums on the partition function which solve a problem given by Merca. Furthermore, we prove an inequality on ordinary partition which implies the positive result on truncated sums of partition function due to Andrews and Merca.</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-021-01167-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Number theory ; Original Paper ; Partitions (mathematics) ; Sums ; Theoretical</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2022, Vol.116 (1), Article 22</ispartof><rights>The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2021</rights><rights>The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-221f51a9b3fd47f176328ef4328a68187a95514327bdc805ee05d179e5d4ab683</citedby><cites>FETCH-LOGICAL-c319t-221f51a9b3fd47f176328ef4328a68187a95514327bdc805ee05d179e5d4ab683</cites><orcidid>0000-0002-9484-5156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xia, Ernest X. W.</creatorcontrib><creatorcontrib>Zhao, Xiang</creatorcontrib><title>Truncated sums for the partition function and a problem of Merca</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><addtitle>RACSAM</addtitle><description>In 2012, Andrews and Merca established a truncated form of Euler’s pentagonal number theory. In this note, using the Rogers–Fine identity, we present a partition theoretic interpretation of truncated sums on the partition function which solve a problem given by Merca. Furthermore, we prove an inequality on ordinary partition which implies the positive result on truncated sums of partition function due to Andrews and Merca.</description><subject>Applications of Mathematics</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number theory</subject><subject>Original Paper</subject><subject>Partitions (mathematics)</subject><subject>Sums</subject><subject>Theoretical</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLgsu4f8BTwHM0kTZPelMUvWPGynkPaJNpl29SkPfjvja3gzWGYD-a9meEhdAn0GiiVNwk4rxShDAgFKCUpTtAKhKwICCpO51oRySk_R5uUDjQbh0JRuUK3-zj1jRmdxWnqEvYh4vHD4cHEsR3b0GOf53NheosNHmKoj67DweMXFxtzgc68OSa3-c1r9PZwv98-kd3r4_P2bkcaDtVIGAMvwFQ197aQHmTJmXK-yNGUCpQ0lRCQW1nbRlHhHBUWZOWELUxdKr5GV8ve_MDn5NKoD2GKfT6pmVDZM5dlFFtQTQwpRef1ENvOxC8NVP-IpRexdBZLz2LpIpP4QkoZ3L-7-Lf6H9Y32kJqhg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Xia, Ernest X. W.</creator><creator>Zhao, Xiang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9484-5156</orcidid></search><sort><creationdate>2022</creationdate><title>Truncated sums for the partition function and a problem of Merca</title><author>Xia, Ernest X. W. ; Zhao, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-221f51a9b3fd47f176328ef4328a68187a95514327bdc805ee05d179e5d4ab683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number theory</topic><topic>Original Paper</topic><topic>Partitions (mathematics)</topic><topic>Sums</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Ernest X. W.</creatorcontrib><creatorcontrib>Zhao, Xiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Ernest X. W.</au><au>Zhao, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Truncated sums for the partition function and a problem of Merca</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><stitle>RACSAM</stitle><date>2022</date><risdate>2022</risdate><volume>116</volume><issue>1</issue><artnum>22</artnum><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>In 2012, Andrews and Merca established a truncated form of Euler’s pentagonal number theory. In this note, using the Rogers–Fine identity, we present a partition theoretic interpretation of truncated sums on the partition function which solve a problem given by Merca. Furthermore, we prove an inequality on ordinary partition which implies the positive result on truncated sums of partition function due to Andrews and Merca.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13398-021-01167-4</doi><orcidid>https://orcid.org/0000-0002-9484-5156</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1578-7303 |
ispartof | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2022, Vol.116 (1), Article 22 |
issn | 1578-7303 1579-1505 |
language | eng |
recordid | cdi_proquest_journals_2582584322 |
source | Springer Nature |
subjects | Applications of Mathematics Mathematical and Computational Physics Mathematics Mathematics and Statistics Number theory Original Paper Partitions (mathematics) Sums Theoretical |
title | Truncated sums for the partition function and a problem of Merca |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Truncated%20sums%20for%20the%20partition%20function%20and%20a%20problem%20of%20Merca&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=Xia,%20Ernest%20X.%20W.&rft.date=2022&rft.volume=116&rft.issue=1&rft.artnum=22&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-021-01167-4&rft_dat=%3Cproquest_cross%3E2582584322%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-221f51a9b3fd47f176328ef4328a68187a95514327bdc805ee05d179e5d4ab683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582584322&rft_id=info:pmid/&rfr_iscdi=true |