Loading…

Assembly of Nano‐Biocatalyst for the Tandem Hydrolysis and Reduction of p‐Nitrophenol Esters

Hybrid nano‐biomaterials are exploited in the design and performance of chemo‐enzymatic cascades. In this study, lipase is immobilized from Candida antarctica fraction B (CALB) and gold nanoparticles (Au NPs) on magnetic particles coated with silica (MNP@SiO2) to stepwise hydrolyze and reduce p‐nitr...

Full description

Saved in:
Bibliographic Details
Published in:Particle & particle systems characterization 2021-10, Vol.38 (10), p.n/a
Main Authors: Barros, Heloise Ribeiro, Tanaka, Lívia Yukari, da Silva, Rafael Trivella Pacheco, Santiago‐Arcos, Javier, Torresi, Susana I. Córdoba, López‐Gallego, Fernando
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3576-51697c68512cdd950a02a07a85468d3ea3ee5468fe18f6c8dc4cb622b51d23d03
cites cdi_FETCH-LOGICAL-c3576-51697c68512cdd950a02a07a85468d3ea3ee5468fe18f6c8dc4cb622b51d23d03
container_end_page n/a
container_issue 10
container_start_page
container_title Particle & particle systems characterization
container_volume 38
creator Barros, Heloise Ribeiro
Tanaka, Lívia Yukari
da Silva, Rafael Trivella Pacheco
Santiago‐Arcos, Javier
Torresi, Susana I. Córdoba
López‐Gallego, Fernando
description Hybrid nano‐biomaterials are exploited in the design and performance of chemo‐enzymatic cascades. In this study, lipase is immobilized from Candida antarctica fraction B (CALB) and gold nanoparticles (Au NPs) on magnetic particles coated with silica (MNP@SiO2) to stepwise hydrolyze and reduce p‐nitrophenyl esters in tandem reaction. The assembly of the two catalysts at the interface of the MNP@SiO2 particles and the temporal control of the reaction turns out to be the most determinant parameters for the cascade kinetics. When both CALB and Au NPs are co‐immobilized at the MNP@SiO2 particle, the tandem reactions take place significantly faster than when both catalysts are physically segregated by their immobilization on different MNP@SiO2 particles. Herein, it is demonstrated that the co‐immobilization of biocatalysts and nanocatalysts in solid materials creates hybrid interfaces that accelerated chemo‐enzymatic tandem reactions. The assembly of biocatalysts and nanocatalysts matters to the more efficient chemo‐enzymatic cascade reactions. The comparison of co‐immobilized and physically segregated assemblies reveals that interfacial interactions play a key role in both concurrent and sequential nano‐biocatalysis reaction modes. The overall performance is regulated by exploiting the localization of enzymes and Au nanoparticles on the surface of magnetic nanoparticles.
doi_str_mv 10.1002/ppsc.202100136
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582772116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582772116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-51697c68512cdd950a02a07a85468d3ea3ee5468fe18f6c8dc4cb622b51d23d03</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqWwMltiTvEldpyxVIUiVaWCMhvXdtRUaRzsVFU2HoFn5ElwVAQj07n93zlHPwDXGI0wQuS2aYIeEURigSk_AQPMCE5SjLNTMEA5TRMkOD8HFyFsEUKcYT4Ab-MQ7G5dddAVcKFq9_XxeVc6rVpVdaGFhfOw3Vi4UrWxOzjrjHdxUAYYG_DZmr1uS1f3dBPRRdl612xs7So4Da314RKcFaoK9uonDsHr_XQ1mSXzp4fHyXieaMoynsRn8kxzwTDRxuQMKUQUypRgKReGWkWt7dPCYlFwLYxO9ZoTsmbYEGoQHYKb497Gu_e9Da3cur2v40lJmCBZRjDmUTU6qrR3IXhbyMaXO-U7iZHsXZS9i_LXxQjkR-BQVrb7Ry2Xy5fJH_sNE9Z4mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582772116</pqid></control><display><type>article</type><title>Assembly of Nano‐Biocatalyst for the Tandem Hydrolysis and Reduction of p‐Nitrophenol Esters</title><source>Wiley</source><creator>Barros, Heloise Ribeiro ; Tanaka, Lívia Yukari ; da Silva, Rafael Trivella Pacheco ; Santiago‐Arcos, Javier ; Torresi, Susana I. Córdoba ; López‐Gallego, Fernando</creator><creatorcontrib>Barros, Heloise Ribeiro ; Tanaka, Lívia Yukari ; da Silva, Rafael Trivella Pacheco ; Santiago‐Arcos, Javier ; Torresi, Susana I. Córdoba ; López‐Gallego, Fernando</creatorcontrib><description>Hybrid nano‐biomaterials are exploited in the design and performance of chemo‐enzymatic cascades. In this study, lipase is immobilized from Candida antarctica fraction B (CALB) and gold nanoparticles (Au NPs) on magnetic particles coated with silica (MNP@SiO2) to stepwise hydrolyze and reduce p‐nitrophenyl esters in tandem reaction. The assembly of the two catalysts at the interface of the MNP@SiO2 particles and the temporal control of the reaction turns out to be the most determinant parameters for the cascade kinetics. When both CALB and Au NPs are co‐immobilized at the MNP@SiO2 particle, the tandem reactions take place significantly faster than when both catalysts are physically segregated by their immobilization on different MNP@SiO2 particles. Herein, it is demonstrated that the co‐immobilization of biocatalysts and nanocatalysts in solid materials creates hybrid interfaces that accelerated chemo‐enzymatic tandem reactions. The assembly of biocatalysts and nanocatalysts matters to the more efficient chemo‐enzymatic cascade reactions. The comparison of co‐immobilized and physically segregated assemblies reveals that interfacial interactions play a key role in both concurrent and sequential nano‐biocatalysis reaction modes. The overall performance is regulated by exploiting the localization of enzymes and Au nanoparticles on the surface of magnetic nanoparticles.</description><identifier>ISSN: 0934-0866</identifier><identifier>EISSN: 1521-4117</identifier><identifier>DOI: 10.1002/ppsc.202100136</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Assembly ; biocatalysis ; Biomedical materials ; Cascade chemical reactions ; Catalysts ; chemo‐enzymatic cascade reactions ; colloidal chemistry ; Esters ; Gold ; Immobilization ; interfacial interactions ; nanocatalysis ; Nanoparticles ; nanostructures ; Nitrophenol ; Silicon dioxide</subject><ispartof>Particle &amp; particle systems characterization, 2021-10, Vol.38 (10), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-51697c68512cdd950a02a07a85468d3ea3ee5468fe18f6c8dc4cb622b51d23d03</citedby><cites>FETCH-LOGICAL-c3576-51697c68512cdd950a02a07a85468d3ea3ee5468fe18f6c8dc4cb622b51d23d03</cites><orcidid>0000-0003-2700-7803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barros, Heloise Ribeiro</creatorcontrib><creatorcontrib>Tanaka, Lívia Yukari</creatorcontrib><creatorcontrib>da Silva, Rafael Trivella Pacheco</creatorcontrib><creatorcontrib>Santiago‐Arcos, Javier</creatorcontrib><creatorcontrib>Torresi, Susana I. Córdoba</creatorcontrib><creatorcontrib>López‐Gallego, Fernando</creatorcontrib><title>Assembly of Nano‐Biocatalyst for the Tandem Hydrolysis and Reduction of p‐Nitrophenol Esters</title><title>Particle &amp; particle systems characterization</title><description>Hybrid nano‐biomaterials are exploited in the design and performance of chemo‐enzymatic cascades. In this study, lipase is immobilized from Candida antarctica fraction B (CALB) and gold nanoparticles (Au NPs) on magnetic particles coated with silica (MNP@SiO2) to stepwise hydrolyze and reduce p‐nitrophenyl esters in tandem reaction. The assembly of the two catalysts at the interface of the MNP@SiO2 particles and the temporal control of the reaction turns out to be the most determinant parameters for the cascade kinetics. When both CALB and Au NPs are co‐immobilized at the MNP@SiO2 particle, the tandem reactions take place significantly faster than when both catalysts are physically segregated by their immobilization on different MNP@SiO2 particles. Herein, it is demonstrated that the co‐immobilization of biocatalysts and nanocatalysts in solid materials creates hybrid interfaces that accelerated chemo‐enzymatic tandem reactions. The assembly of biocatalysts and nanocatalysts matters to the more efficient chemo‐enzymatic cascade reactions. The comparison of co‐immobilized and physically segregated assemblies reveals that interfacial interactions play a key role in both concurrent and sequential nano‐biocatalysis reaction modes. The overall performance is regulated by exploiting the localization of enzymes and Au nanoparticles on the surface of magnetic nanoparticles.</description><subject>Assembly</subject><subject>biocatalysis</subject><subject>Biomedical materials</subject><subject>Cascade chemical reactions</subject><subject>Catalysts</subject><subject>chemo‐enzymatic cascade reactions</subject><subject>colloidal chemistry</subject><subject>Esters</subject><subject>Gold</subject><subject>Immobilization</subject><subject>interfacial interactions</subject><subject>nanocatalysis</subject><subject>Nanoparticles</subject><subject>nanostructures</subject><subject>Nitrophenol</subject><subject>Silicon dioxide</subject><issn>0934-0866</issn><issn>1521-4117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EEqWwMltiTvEldpyxVIUiVaWCMhvXdtRUaRzsVFU2HoFn5ElwVAQj07n93zlHPwDXGI0wQuS2aYIeEURigSk_AQPMCE5SjLNTMEA5TRMkOD8HFyFsEUKcYT4Ab-MQ7G5dddAVcKFq9_XxeVc6rVpVdaGFhfOw3Vi4UrWxOzjrjHdxUAYYG_DZmr1uS1f3dBPRRdl612xs7So4Da314RKcFaoK9uonDsHr_XQ1mSXzp4fHyXieaMoynsRn8kxzwTDRxuQMKUQUypRgKReGWkWt7dPCYlFwLYxO9ZoTsmbYEGoQHYKb497Gu_e9Da3cur2v40lJmCBZRjDmUTU6qrR3IXhbyMaXO-U7iZHsXZS9i_LXxQjkR-BQVrb7Ry2Xy5fJH_sNE9Z4mg</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Barros, Heloise Ribeiro</creator><creator>Tanaka, Lívia Yukari</creator><creator>da Silva, Rafael Trivella Pacheco</creator><creator>Santiago‐Arcos, Javier</creator><creator>Torresi, Susana I. Córdoba</creator><creator>López‐Gallego, Fernando</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2700-7803</orcidid></search><sort><creationdate>202110</creationdate><title>Assembly of Nano‐Biocatalyst for the Tandem Hydrolysis and Reduction of p‐Nitrophenol Esters</title><author>Barros, Heloise Ribeiro ; Tanaka, Lívia Yukari ; da Silva, Rafael Trivella Pacheco ; Santiago‐Arcos, Javier ; Torresi, Susana I. Córdoba ; López‐Gallego, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-51697c68512cdd950a02a07a85468d3ea3ee5468fe18f6c8dc4cb622b51d23d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Assembly</topic><topic>biocatalysis</topic><topic>Biomedical materials</topic><topic>Cascade chemical reactions</topic><topic>Catalysts</topic><topic>chemo‐enzymatic cascade reactions</topic><topic>colloidal chemistry</topic><topic>Esters</topic><topic>Gold</topic><topic>Immobilization</topic><topic>interfacial interactions</topic><topic>nanocatalysis</topic><topic>Nanoparticles</topic><topic>nanostructures</topic><topic>Nitrophenol</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barros, Heloise Ribeiro</creatorcontrib><creatorcontrib>Tanaka, Lívia Yukari</creatorcontrib><creatorcontrib>da Silva, Rafael Trivella Pacheco</creatorcontrib><creatorcontrib>Santiago‐Arcos, Javier</creatorcontrib><creatorcontrib>Torresi, Susana I. Córdoba</creatorcontrib><creatorcontrib>López‐Gallego, Fernando</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Particle &amp; particle systems characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barros, Heloise Ribeiro</au><au>Tanaka, Lívia Yukari</au><au>da Silva, Rafael Trivella Pacheco</au><au>Santiago‐Arcos, Javier</au><au>Torresi, Susana I. Córdoba</au><au>López‐Gallego, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assembly of Nano‐Biocatalyst for the Tandem Hydrolysis and Reduction of p‐Nitrophenol Esters</atitle><jtitle>Particle &amp; particle systems characterization</jtitle><date>2021-10</date><risdate>2021</risdate><volume>38</volume><issue>10</issue><epage>n/a</epage><issn>0934-0866</issn><eissn>1521-4117</eissn><abstract>Hybrid nano‐biomaterials are exploited in the design and performance of chemo‐enzymatic cascades. In this study, lipase is immobilized from Candida antarctica fraction B (CALB) and gold nanoparticles (Au NPs) on magnetic particles coated with silica (MNP@SiO2) to stepwise hydrolyze and reduce p‐nitrophenyl esters in tandem reaction. The assembly of the two catalysts at the interface of the MNP@SiO2 particles and the temporal control of the reaction turns out to be the most determinant parameters for the cascade kinetics. When both CALB and Au NPs are co‐immobilized at the MNP@SiO2 particle, the tandem reactions take place significantly faster than when both catalysts are physically segregated by their immobilization on different MNP@SiO2 particles. Herein, it is demonstrated that the co‐immobilization of biocatalysts and nanocatalysts in solid materials creates hybrid interfaces that accelerated chemo‐enzymatic tandem reactions. The assembly of biocatalysts and nanocatalysts matters to the more efficient chemo‐enzymatic cascade reactions. The comparison of co‐immobilized and physically segregated assemblies reveals that interfacial interactions play a key role in both concurrent and sequential nano‐biocatalysis reaction modes. The overall performance is regulated by exploiting the localization of enzymes and Au nanoparticles on the surface of magnetic nanoparticles.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppsc.202100136</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2700-7803</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0934-0866
ispartof Particle & particle systems characterization, 2021-10, Vol.38 (10), p.n/a
issn 0934-0866
1521-4117
language eng
recordid cdi_proquest_journals_2582772116
source Wiley
subjects Assembly
biocatalysis
Biomedical materials
Cascade chemical reactions
Catalysts
chemo‐enzymatic cascade reactions
colloidal chemistry
Esters
Gold
Immobilization
interfacial interactions
nanocatalysis
Nanoparticles
nanostructures
Nitrophenol
Silicon dioxide
title Assembly of Nano‐Biocatalyst for the Tandem Hydrolysis and Reduction of p‐Nitrophenol Esters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A25%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assembly%20of%20Nano%E2%80%90Biocatalyst%20for%20the%20Tandem%20Hydrolysis%20and%20Reduction%20of%20p%E2%80%90Nitrophenol%20Esters&rft.jtitle=Particle%20&%20particle%20systems%20characterization&rft.au=Barros,%20Heloise%20Ribeiro&rft.date=2021-10&rft.volume=38&rft.issue=10&rft.epage=n/a&rft.issn=0934-0866&rft.eissn=1521-4117&rft_id=info:doi/10.1002/ppsc.202100136&rft_dat=%3Cproquest_cross%3E2582772116%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3576-51697c68512cdd950a02a07a85468d3ea3ee5468fe18f6c8dc4cb622b51d23d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582772116&rft_id=info:pmid/&rfr_iscdi=true