Loading…

A Torque Vectoring Control for Enhancing Vehicle Performance in Drifting

When dealing with electric vehicles, different powertrain layouts can be exploited. Among them, the most interesting one in terms of vehicle lateral dynamics is represented by the one with independent electric motors: two or four electric motors. This allows torque-vectoring control strategies to be...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2018-12, Vol.7 (12), p.394
Main Authors: Vignati, Michele, Sabbioni, Edoardo, Cheli, Federico
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When dealing with electric vehicles, different powertrain layouts can be exploited. Among them, the most interesting one in terms of vehicle lateral dynamics is represented by the one with independent electric motors: two or four electric motors. This allows torque-vectoring control strategies to be applied for increasing vehicle lateral performance and stability. In this paper, a novel control strategy based on torque-vectoring is used to design a drifting control that helps the driver in controlling the vehicle in such a condition. Drift is a particular cornering condition in which high values of sideslip angle are obtained and maintained during the turn. The controller is applied to a rear-wheel drive race car prototype with two independent electric motors on the rear axle. The controller relies only on lateral acceleration, yaw rate, and vehicle speed measurement. This makes it independent from state estimators, which can affect its performance and robustness.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics7120394