Loading…

On the Coefficients of Certain Subclasses of Harmonic Univalent Mappings with Nonzero Pole

Let Co ( p ), p ∈ ( 0 , 1 ] be the class of all meromorphic univalent functions φ defined in the open unit disc D with normalizations φ ( 0 ) = 0 = φ ′ ( 0 ) - 1 and having simple pole at z = p ∈ ( 0 , 1 ] such that the complement of φ ( D ) is a convex domain. The class Co ( p ) is called the class...

Full description

Saved in:
Bibliographic Details
Published in:Boletim da Sociedade Brasileira de Matemática 2021-12, Vol.52 (4), p.1041-1053
Main Authors: Bhowmik, Bappaditya, Majee, Santana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-3e2f8197d2557ca87b2a496a6e6eb8e25527eb8d8aa00d080811a2bd06cb428d3
cites cdi_FETCH-LOGICAL-c319t-3e2f8197d2557ca87b2a496a6e6eb8e25527eb8d8aa00d080811a2bd06cb428d3
container_end_page 1053
container_issue 4
container_start_page 1041
container_title Boletim da Sociedade Brasileira de Matemática
container_volume 52
creator Bhowmik, Bappaditya
Majee, Santana
description Let Co ( p ), p ∈ ( 0 , 1 ] be the class of all meromorphic univalent functions φ defined in the open unit disc D with normalizations φ ( 0 ) = 0 = φ ′ ( 0 ) - 1 and having simple pole at z = p ∈ ( 0 , 1 ] such that the complement of φ ( D ) is a convex domain. The class Co ( p ) is called the class of concave univalent functions. Let S H 0 ( p ) be the class of all sense preserving univalent harmonic mappings f defined on D having simple pole at z = p ∈ ( 0 , 1 ) with the normalizations f ( 0 ) = f z ( 0 ) - 1 = 0 and f z ¯ ( 0 ) = 0 . We first derive the exact regions of variability for the second Taylor coefficients of h where f = h + g ¯ ∈ S H 0 ( p ) with h - g ∈ C o ( p ) . Next we consider the class S H 0 ( 1 ) of all sense preserving univalent harmonic mappings f in D having simple pole at z = 1 with the same normalizations as above. We derive exact regions of variability for the coefficients of h where f = h + g ¯ ∈ S H 0 ( 1 ) satisfying h - e 2 i θ g ∈ C o ( 1 ) with dilatation g ′ ( z ) / h ′ ( z ) = e - 2 i θ z , for some θ , 0 ≤ θ < π .
doi_str_mv 10.1007/s00574-021-00244-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582804863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582804863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3e2f8197d2557ca87b2a496a6e6eb8e25527eb8d8aa00d080811a2bd06cb428d3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwscQ6sHSd2jygCilR-JOiFi-UkTusqtYOdQuHpMQ2IG6cdjb6ZlQahUwLnBIBfBICMswQoSQAoY8l2D41IzkXCOWH7vzpj7BAdhbACgDzL0hF6ebC4X2pcON00pjLa9gG7Bhfa98pY_LQpq1aFoHfuVPm1s6bCc2veVBthfKe6zthFwO-mX-J7Zz-1d_jRtfoYHTSqDfrk547R_PrquZgms4eb2-JyllQpmfRJqmkjyITXNMt4pQQvqWKTXOU616XQ0aU8ilooBVCDAEGIomUNeVUyKup0jM6G3s67140OvVy5jbfxpaSZoAKYyNNI0YGqvAvB60Z23qyV_5AE5PeGcthQxg3lbkO5jaF0CIUI24X2f9X_pL4AR9x06A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582804863</pqid></control><display><type>article</type><title>On the Coefficients of Certain Subclasses of Harmonic Univalent Mappings with Nonzero Pole</title><source>Springer Nature</source><creator>Bhowmik, Bappaditya ; Majee, Santana</creator><creatorcontrib>Bhowmik, Bappaditya ; Majee, Santana</creatorcontrib><description>Let Co ( p ), p ∈ ( 0 , 1 ] be the class of all meromorphic univalent functions φ defined in the open unit disc D with normalizations φ ( 0 ) = 0 = φ ′ ( 0 ) - 1 and having simple pole at z = p ∈ ( 0 , 1 ] such that the complement of φ ( D ) is a convex domain. The class Co ( p ) is called the class of concave univalent functions. Let S H 0 ( p ) be the class of all sense preserving univalent harmonic mappings f defined on D having simple pole at z = p ∈ ( 0 , 1 ) with the normalizations f ( 0 ) = f z ( 0 ) - 1 = 0 and f z ¯ ( 0 ) = 0 . We first derive the exact regions of variability for the second Taylor coefficients of h where f = h + g ¯ ∈ S H 0 ( p ) with h - g ∈ C o ( p ) . Next we consider the class S H 0 ( 1 ) of all sense preserving univalent harmonic mappings f in D having simple pole at z = 1 with the same normalizations as above. We derive exact regions of variability for the coefficients of h where f = h + g ¯ ∈ S H 0 ( 1 ) satisfying h - e 2 i θ g ∈ C o ( 1 ) with dilatation g ′ ( z ) / h ′ ( z ) = e - 2 i θ z , for some θ , 0 ≤ θ &lt; π .</description><identifier>ISSN: 1678-7544</identifier><identifier>EISSN: 1678-7714</identifier><identifier>DOI: 10.1007/s00574-021-00244-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Coefficients ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Boletim da Sociedade Brasileira de Matemática, 2021-12, Vol.52 (4), p.1041-1053</ispartof><rights>Sociedade Brasileira de Matemática 2021</rights><rights>Sociedade Brasileira de Matemática 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3e2f8197d2557ca87b2a496a6e6eb8e25527eb8d8aa00d080811a2bd06cb428d3</citedby><cites>FETCH-LOGICAL-c319t-3e2f8197d2557ca87b2a496a6e6eb8e25527eb8d8aa00d080811a2bd06cb428d3</cites><orcidid>0000-0001-9171-3548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bhowmik, Bappaditya</creatorcontrib><creatorcontrib>Majee, Santana</creatorcontrib><title>On the Coefficients of Certain Subclasses of Harmonic Univalent Mappings with Nonzero Pole</title><title>Boletim da Sociedade Brasileira de Matemática</title><addtitle>Bull Braz Math Soc, New Series</addtitle><description>Let Co ( p ), p ∈ ( 0 , 1 ] be the class of all meromorphic univalent functions φ defined in the open unit disc D with normalizations φ ( 0 ) = 0 = φ ′ ( 0 ) - 1 and having simple pole at z = p ∈ ( 0 , 1 ] such that the complement of φ ( D ) is a convex domain. The class Co ( p ) is called the class of concave univalent functions. Let S H 0 ( p ) be the class of all sense preserving univalent harmonic mappings f defined on D having simple pole at z = p ∈ ( 0 , 1 ) with the normalizations f ( 0 ) = f z ( 0 ) - 1 = 0 and f z ¯ ( 0 ) = 0 . We first derive the exact regions of variability for the second Taylor coefficients of h where f = h + g ¯ ∈ S H 0 ( p ) with h - g ∈ C o ( p ) . Next we consider the class S H 0 ( 1 ) of all sense preserving univalent harmonic mappings f in D having simple pole at z = 1 with the same normalizations as above. We derive exact regions of variability for the coefficients of h where f = h + g ¯ ∈ S H 0 ( 1 ) satisfying h - e 2 i θ g ∈ C o ( 1 ) with dilatation g ′ ( z ) / h ′ ( z ) = e - 2 i θ z , for some θ , 0 ≤ θ &lt; π .</description><subject>Coefficients</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>1678-7544</issn><issn>1678-7714</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwApwscQ6sHSd2jygCilR-JOiFi-UkTusqtYOdQuHpMQ2IG6cdjb6ZlQahUwLnBIBfBICMswQoSQAoY8l2D41IzkXCOWH7vzpj7BAdhbACgDzL0hF6ebC4X2pcON00pjLa9gG7Bhfa98pY_LQpq1aFoHfuVPm1s6bCc2veVBthfKe6zthFwO-mX-J7Zz-1d_jRtfoYHTSqDfrk547R_PrquZgms4eb2-JyllQpmfRJqmkjyITXNMt4pQQvqWKTXOU616XQ0aU8ilooBVCDAEGIomUNeVUyKup0jM6G3s67140OvVy5jbfxpaSZoAKYyNNI0YGqvAvB60Z23qyV_5AE5PeGcthQxg3lbkO5jaF0CIUI24X2f9X_pL4AR9x06A</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Bhowmik, Bappaditya</creator><creator>Majee, Santana</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9171-3548</orcidid></search><sort><creationdate>20211201</creationdate><title>On the Coefficients of Certain Subclasses of Harmonic Univalent Mappings with Nonzero Pole</title><author>Bhowmik, Bappaditya ; Majee, Santana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3e2f8197d2557ca87b2a496a6e6eb8e25527eb8d8aa00d080811a2bd06cb428d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coefficients</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhowmik, Bappaditya</creatorcontrib><creatorcontrib>Majee, Santana</creatorcontrib><collection>CrossRef</collection><jtitle>Boletim da Sociedade Brasileira de Matemática</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhowmik, Bappaditya</au><au>Majee, Santana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Coefficients of Certain Subclasses of Harmonic Univalent Mappings with Nonzero Pole</atitle><jtitle>Boletim da Sociedade Brasileira de Matemática</jtitle><stitle>Bull Braz Math Soc, New Series</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>52</volume><issue>4</issue><spage>1041</spage><epage>1053</epage><pages>1041-1053</pages><issn>1678-7544</issn><eissn>1678-7714</eissn><abstract>Let Co ( p ), p ∈ ( 0 , 1 ] be the class of all meromorphic univalent functions φ defined in the open unit disc D with normalizations φ ( 0 ) = 0 = φ ′ ( 0 ) - 1 and having simple pole at z = p ∈ ( 0 , 1 ] such that the complement of φ ( D ) is a convex domain. The class Co ( p ) is called the class of concave univalent functions. Let S H 0 ( p ) be the class of all sense preserving univalent harmonic mappings f defined on D having simple pole at z = p ∈ ( 0 , 1 ) with the normalizations f ( 0 ) = f z ( 0 ) - 1 = 0 and f z ¯ ( 0 ) = 0 . We first derive the exact regions of variability for the second Taylor coefficients of h where f = h + g ¯ ∈ S H 0 ( p ) with h - g ∈ C o ( p ) . Next we consider the class S H 0 ( 1 ) of all sense preserving univalent harmonic mappings f in D having simple pole at z = 1 with the same normalizations as above. We derive exact regions of variability for the coefficients of h where f = h + g ¯ ∈ S H 0 ( 1 ) satisfying h - e 2 i θ g ∈ C o ( 1 ) with dilatation g ′ ( z ) / h ′ ( z ) = e - 2 i θ z , for some θ , 0 ≤ θ &lt; π .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00574-021-00244-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9171-3548</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1678-7544
ispartof Boletim da Sociedade Brasileira de Matemática, 2021-12, Vol.52 (4), p.1041-1053
issn 1678-7544
1678-7714
language eng
recordid cdi_proquest_journals_2582804863
source Springer Nature
subjects Coefficients
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
title On the Coefficients of Certain Subclasses of Harmonic Univalent Mappings with Nonzero Pole
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Coefficients%20of%20Certain%20Subclasses%20of%20Harmonic%20Univalent%20Mappings%20with%20Nonzero%20Pole&rft.jtitle=Boletim%20da%20Sociedade%20Brasileira%20de%20Matem%C3%A1tica&rft.au=Bhowmik,%20Bappaditya&rft.date=2021-12-01&rft.volume=52&rft.issue=4&rft.spage=1041&rft.epage=1053&rft.pages=1041-1053&rft.issn=1678-7544&rft.eissn=1678-7714&rft_id=info:doi/10.1007/s00574-021-00244-x&rft_dat=%3Cproquest_cross%3E2582804863%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-3e2f8197d2557ca87b2a496a6e6eb8e25527eb8d8aa00d080811a2bd06cb428d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582804863&rft_id=info:pmid/&rfr_iscdi=true